These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15863473)

  • 41. Magnetic compass orientation in birds and its physiological basis.
    Wiltschko W; Wiltschko R
    Naturwissenschaften; 2002 Oct; 89(10):445-52. PubMed ID: 12384718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetization reversal process at atomic scale in systems with itinerant electrons.
    Uzdin VM; Vega A
    J Phys Condens Matter; 2012 May; 24(17):176002. PubMed ID: 22469970
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A quantitative assessment of torque-transducer models for magnetoreception.
    Winklhofer M; Kirschvink JL
    J R Soc Interface; 2010 Apr; 7 Suppl 2(Suppl 2):S273-89. PubMed ID: 20086054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantifying the magnetic advantage in magnetotaxis.
    Smith MJ; Sheehan PE; Perry LL; O'Connor K; Csonka LN; Applegate BM; Whitman LJ
    Biophys J; 2006 Aug; 91(3):1098-107. PubMed ID: 16714352
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins.
    Liwo A; Khalili M; Czaplewski C; Kalinowski S; Ołdziej S; Wachucik K; Scheraga HA
    J Phys Chem B; 2007 Jan; 111(1):260-85. PubMed ID: 17201450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Navigational abilities of adult and experienced homing pigeons deprived of olfactory or trigeminally mediated magnetic information.
    Gagliardo A; Ioalè P; Savini M; Wild M
    J Exp Biol; 2009 Oct; 212(19):3119-24. PubMed ID: 19749104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical compass model of avian magnetoreception.
    Maeda K; Henbest KB; Cintolesi F; Kuprov I; Rodgers CT; Liddell PA; Gust D; Timmel CR; Hore PJ
    Nature; 2008 May; 453(7193):387-90. PubMed ID: 18449197
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantum dynamics of complex molecular systems.
    Miller WH
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6660-4. PubMed ID: 15870209
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird.
    Beason R; Dussourd N; Deutschlander M
    J Exp Biol; 1995; 198(Pt 1):141-6. PubMed ID: 9317510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Basic spin physics.
    Pipe JG
    Magn Reson Imaging Clin N Am; 1999 Nov; 7(4):607-27. PubMed ID: 10631671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Viscosity-dependent Janus particle chain dynamics.
    Ren B; Kretzschmar I
    Langmuir; 2013 Dec; 29(48):14779-86. PubMed ID: 24218982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics.
    Bretcanu O; Spriano S; Verné E; Cöisson M; Tiberto P; Allia P
    Acta Biomater; 2005 Jul; 1(4):421-9. PubMed ID: 16701823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Near-field magnetostatics and Néel-Brownian interactions mediated magneto-rheological characteristics of highly stable nano-ferrocolloids.
    Katiyar A; Dhar P; Das SK; Nandi T
    Soft Matter; 2015 Feb; 11(8):1614-27. PubMed ID: 25599522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conditioned discrimination of magnetic inclination in a spatial-orientation arena task by homing pigeons (Columba livia).
    Mora CV; Acerbi ML; Bingman VP
    J Exp Biol; 2014 Dec; 217(Pt 23):4123-31. PubMed ID: 25278470
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.
    Maeda K; Storey JG; Liddell PA; Gust D; Hore PJ; Wedge CJ; Timmel CR
    Phys Chem Chem Phys; 2015 Feb; 17(5):3550-9. PubMed ID: 25537133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons.
    Leask MJ
    Nature; 1977 May; 267(5607):144-5. PubMed ID: 16073421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Towards efficient methods for the study of pattern formation in ferrofluid films.
    Richardi J; Pileni MP
    Eur Phys J E Soft Matter; 2004 Jan; 13(1):99-106. PubMed ID: 15024620
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Symmetry-switching molecular Fe(O2)n(+) clusters.
    Mpourmpakis G; Velegrakis M; Mihesan C; Andriotis AN
    J Phys Chem A; 2011 Jul; 115(26):7456-60. PubMed ID: 21615142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.