These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 15863618)

  • 1. Structural mechanism of the recovery stroke in the myosin molecular motor.
    Fischer S; Windshügel B; Horak D; Holmes KC; Smith JC
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6873-8. PubMed ID: 15863618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.
    Koppole S; Smith JC; Fischer S
    J Mol Biol; 2006 Aug; 361(3):604-16. PubMed ID: 16859703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.
    Mesentean S; Koppole S; Smith JC; Fischer S
    J Mol Biol; 2007 Mar; 367(2):591-602. PubMed ID: 17275022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural rearrangements in the active site of smooth-muscle myosin.
    Robertson CI; Gaffney DP; Chrin LR; Berger CL
    Biophys J; 2005 Sep; 89(3):1882-92. PubMed ID: 15951390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography.
    Málnási-Csizmadia A; Woolley RJ; Bagshaw CR
    Biochemistry; 2000 Dec; 39(51):16135-46. PubMed ID: 11123942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing myosin's power stroke in muscle contraction.
    Reedy MC
    J Cell Sci; 2000 Oct; 113 ( Pt 20)():3551-62. PubMed ID: 11017871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V.
    Gunther LK; Rohde JA; Tang W; Cirilo JA; Marang CP; Scott BD; Thomas DD; Debold EP; Yengo CM
    J Biol Chem; 2020 Dec; 295(51):17383-17397. PubMed ID: 33453985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lever arm model of force generation by actin-myosin-ATP.
    Highsmith S
    Biochemistry; 1999 Aug; 38(31):9791-7. PubMed ID: 10433684
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural mechanism of the ATP-induced dissociation of rigor myosin from actin.
    Kühner S; Fischer S
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7793-8. PubMed ID: 21518908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS Congress in Prague, Czech Republic, July 2009.
    Llinas P; Pylypenko O; Isabet T; Mukherjea M; Sweeney HL; Houdusse AM
    FEBS J; 2012 Feb; 279(4):551-62. PubMed ID: 22171985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.
    Yu H; Ma L; Yang Y; Cui Q
    PLoS Comput Biol; 2007 Feb; 3(2):e21. PubMed ID: 17291159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of myosin interdomain interactions during contraction: deductions from proteins in solution.
    Burghardt TP; Park S; Ajtai K
    Biochemistry; 2001 Apr; 40(15):4834-43. PubMed ID: 11294651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural coupling between ATPase activation and recovery stroke in the myosin II motor.
    Koppole S; Smith JC; Fischer S
    Structure; 2007 Jul; 15(7):825-37. PubMed ID: 17637343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of the hydrophobic triplet in the motor domain of myosin in the interaction between myosin and actin.
    Hachikubo Y; Ito K; Yamamoto K
    J Biochem; 2003 Jul; 134(1):165-71. PubMed ID: 12944384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The myosin relay helix to converter interface remains intact throughout the actomyosin ATPase cycle.
    Shih WM; Spudich JA
    J Biol Chem; 2001 Jun; 276(22):19491-4. PubMed ID: 11278776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutating the converter-relay interface of Drosophila myosin perturbs ATPase activity, actin motility, myofibril stability and flight ability.
    Kronert WA; Melkani GC; Melkani A; Bernstein SI
    J Mol Biol; 2010 May; 398(5):625-32. PubMed ID: 20362584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of domain-domain interaction for conformational change and functional ATP hydrolysis in myosin.
    Ito K; Uyeda TQ; Suzuki Y; Sutoh K; Yamamoto K
    J Biol Chem; 2003 Aug; 278(33):31049-57. PubMed ID: 12756255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myosin motor domain lever arm rotation is coupled to ATP hydrolysis.
    Highsmith S; Polosukhina K; Eden D
    Biochemistry; 2000 Oct; 39(40):12330-5. PubMed ID: 11015212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain.
    Bauer CB; Holden HM; Thoden JB; Smith R; Rayment I
    J Biol Chem; 2000 Dec; 275(49):38494-9. PubMed ID: 10954715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.