BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 15863834)

  • 1. Domain-specific lipid distribution in macrophage plasma membranes.
    Gaus K; Rodriguez M; Ruberu KR; Gelissen I; Sloane TM; Kritharides L; Jessup W
    J Lipid Res; 2005 Jul; 46(7):1526-38. PubMed ID: 15863834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.
    Hattersley KJ; Hein LK; Fuller M
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):62-7. PubMed ID: 24220330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Analysis of Lipid Rafts from Neural Cells and Tissues.
    Grassi S; Giussani P; Mauri L; Prioni S; Prinetti A
    Methods Mol Biol; 2021; 2187():1-25. PubMed ID: 32770498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway.
    Mendez AJ; Lin G; Wade DP; Lawn RM; Oram JF
    J Biol Chem; 2001 Feb; 276(5):3158-66. PubMed ID: 11073951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent reveal different lipid and protein domains.
    Eckert GP; Igbavboa U; Müller WE; Wood WG
    Brain Res; 2003 Feb; 962(1-2):144-50. PubMed ID: 12543465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GLUT1 is associated with sphingolipid-organized, cholesterol-independent domains in L929 mouse fibroblast cells.
    Rylaarsdam LE; Johnecheck GN; Looyenga BD; Louters LL
    Biochimie; 2019 Jul; 162():88-96. PubMed ID: 30980844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.
    Radeva G; Sharom FJ
    Biochem J; 2004 May; 380(Pt 1):219-30. PubMed ID: 14769131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution proton NMR measures mobile lipids associated with Triton-resistant membrane domains in haematopoietic K562 cells lacking or expressing caveolin-1.
    Ferretti A; Knijn A; Raggi C; Sargiacomo M
    Eur Biophys J; 2003 May; 32(2):83-95. PubMed ID: 12734696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity.
    Marwali MR; Rey-Ladino J; Dreolini L; Shaw D; Takei F
    Blood; 2003 Jul; 102(1):215-22. PubMed ID: 12637320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study.
    Pike LJ; Han X; Gross RW
    J Biol Chem; 2005 Jul; 280(29):26796-804. PubMed ID: 15917253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of a photoreceptor-specific tetraspanin protein, ROM-1, with triton X-100-resistant membrane rafts from rod outer segment disk membranes.
    Boesze-Battaglia K; Dispoto J; Kahoe MA
    J Biol Chem; 2002 Nov; 277(44):41843-9. PubMed ID: 12196538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes.
    Chamberlain LH; Gould GW
    J Biol Chem; 2002 Dec; 277(51):49750-4. PubMed ID: 12376543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein.
    Ostermeyer AG; Beckrich BT; Ivarson KA; Grove KE; Brown DA
    J Biol Chem; 1999 Nov; 274(48):34459-66. PubMed ID: 10567427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gamma-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum.
    Becher A; White JH; McIlhinney RA
    J Neurochem; 2001 Nov; 79(4):787-95. PubMed ID: 11723171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of detergent-resistant membrane rafts.
    Blonder J; Hale ML; Lucas DA; Schaefer CF; Yu LR; Conrads TP; Issaq HJ; Stiles BG; Veenstra TD
    Electrophoresis; 2004 May; 25(9):1307-18. PubMed ID: 15174053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.
    Dubois L; Ronquist KK; Ek B; Ronquist G; Larsson A
    Mol Cell Proteomics; 2015 Nov; 14(11):3015-22. PubMed ID: 26272980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.