These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 1586396)

  • 21. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.
    Hirose N; Murakawa K; Takada K; Oi Y; Suzuki T; Nagase H; Cools AR; Koshikawa N
    Neuroscience; 2005; 135(1):213-25. PubMed ID: 16111831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential influence of D1 and D2 dopamine receptors on acute opiate withdrawal in guinea-pig isolated ileum.
    Capasso A; Sorrentino L
    Br J Pharmacol; 1997 Mar; 120(6):1001-6. PubMed ID: 9134209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of acetaldehyde on nicotine-induced transmitter levels in young and adult brain areas.
    Sershen H; Shearman E; Fallon S; Chakraborty G; Smiley J; Lajtha A
    Brain Res Bull; 2009 Aug; 79(6):458-62. PubMed ID: 19389462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes.
    Lester PA; Traynor JR
    Brain Res; 2006 Feb; 1073-1074():290-6. PubMed ID: 16443205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurophysiological investigations of opiate tolerance and dependence in the central nervous system.
    Henriksen SJ
    NIDA Res Monogr; 1984; 54():239-59. PubMed ID: 6152487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of constitutive deletion of opioid receptors on the basal densities of Fas and Fas-associated protein with death domain (FADD) in the mouse brain: a delta-opioid tone inhibits FADD.
    García-Fuster MJ; Ferrer-Alcón M; Martín M; Kieffer BL; Maldonado R; García-Sevilla JA
    Eur Neuropsychopharmacol; 2007 Apr; 17(5):366-74. PubMed ID: 17030115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phentermine and fenfluramine. Preclinical studies in animal models of cocaine addiction.
    Rothman RB; Elmer GI; Shippenberg TS; Rea W; Baumann MH
    Ann N Y Acad Sci; 1998 May; 844():59-74. PubMed ID: 9668665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opiate and cocaine addiction: from bench to clinic and back to the bench.
    Kreek MJ; Zhou Y; Butelman ER; Levran O
    Curr Opin Pharmacol; 2009 Feb; 9(1):74-80. PubMed ID: 19155191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurobiological mechanisms of opioid tolerance and dependence.
    Collin E; Cesselin F
    Clin Neuropharmacol; 1991 Dec; 14(6):465-88. PubMed ID: 1663419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neurobiology of opiate reinforcement.
    Shippenberg TS; Elmer GI
    Crit Rev Neurobiol; 1998; 12(4):267-303. PubMed ID: 10348612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of δ-opioid receptors in learning and memory underlying the development of addiction.
    Klenowski P; Morgan M; Bartlett SE
    Br J Pharmacol; 2015 Jan; 172(2):297-310. PubMed ID: 24641428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence.
    Koob GF; Stinus L; Le Moal M; Bloom FE
    Neurosci Biobehav Rev; 1989; 13(2-3):135-40. PubMed ID: 2682399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Opiate and opioid tolerance: toxico-kinetic and toxico-dynamic aspects].
    Golovko AI; Golovko SI; Leont'eva LV; Rudnev VV; Konoplin DA; Romanenko OI
    Zh Nevrol Psikhiatr Im S S Korsakova; 2003; 103(8):82-92. PubMed ID: 14564788
    [No Abstract]   [Full Text] [Related]  

  • 34. Frontal cortex dysfunction as a target for remediation in opiate use disorder: Role in cognitive dysfunction and disordered reward systems.
    Roberts D; Wolfarth A; Sanchez C; Pehrson AL
    Prog Brain Res; 2018; 239():179-227. PubMed ID: 30314567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural systems underlying opiate addiction.
    De Vries TJ; Shippenberg TS
    J Neurosci; 2002 May; 22(9):3321-5. PubMed ID: 11978806
    [No Abstract]   [Full Text] [Related]  

  • 36. Neurobiology of opiate abuse.
    Di Chiara G; North RA
    Trends Pharmacol Sci; 1992 May; 13(5):185-93. PubMed ID: 1604711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacogenomics and addiction to opiates.
    Lichtermann D; Franke P; Maier W; Rao ML
    Eur J Pharmacol; 2000 Dec; 410(2-3):269-279. PubMed ID: 11134675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is opiate addiction associated with longstanding neurobiological changes?
    Martin M; Hurley RA; Taber KH
    J Neuropsychiatry Clin Neurosci; 2007; 19(3):242-8. PubMed ID: 17827409
    [No Abstract]   [Full Text] [Related]  

  • 39. Relevance of opioid bimodality to tolerance/dependence formation. From transmitter release to second messenger formation.
    Gintzler AR
    Adv Exp Med Biol; 1995; 373():73-83. PubMed ID: 7668163
    [No Abstract]   [Full Text] [Related]  

  • 40. Implications of the multiplicity of opioid receptors for the problem of addiction.
    Herz A
    Drug Alcohol Depend; 1990 Apr; 25(2):125-7. PubMed ID: 2158419
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.