These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 15864525)
1. Inheritance of resistance to Xylella fastidiosa within a Vitis rupestris x Vitis arizonica hybrid population. Krivanek AF; Famula TR; Tenscher A; Walker MA Theor Appl Genet; 2005 Jun; 111(1):110-9. PubMed ID: 15864525 [TBL] [Abstract][Full Text] [Related]
2. Identification and molecular mapping of PdR1, a primary resistance gene to Pierce's disease in Vitis. Krivanek AF; Riaz S; Walker MA Theor Appl Genet; 2006 Apr; 112(6):1125-31. PubMed ID: 16435126 [TBL] [Abstract][Full Text] [Related]
3. Refined mapping of the Pierce's disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. Riaz S; Krivanek AF; Xu K; Walker MA Theor Appl Genet; 2006 Nov; 113(7):1317-29. PubMed ID: 16960717 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection. Lin H; Doddapaneni H; Takahashi Y; Walker MA BMC Plant Biol; 2007 Feb; 7():8. PubMed ID: 17316447 [TBL] [Abstract][Full Text] [Related]
5. Leaf scorch symptoms are not correlated with bacterial populations during Pierce's disease. Gambetta GA; Fei J; Rost TL; Matthews MA J Exp Bot; 2007; 58(15-16):4037-46. PubMed ID: 18037677 [TBL] [Abstract][Full Text] [Related]
6. Genetic analysis reveals an east-west divide within North American Vitis species that mirrors their resistance to Pierce's disease. Riaz S; Tenscher AC; Heinitz CC; Huerta-Acosta KG; Walker MA PLoS One; 2020; 15(12):e0243445. PubMed ID: 33338052 [TBL] [Abstract][Full Text] [Related]
7. The effects of Pierce's disease on leaf and petiole hydraulic conductance in Vitis vinifera cv. Chardonnay. Choat B; Gambetta GA; Wada H; Shackel KA; Matthews MA Physiol Plant; 2009 Aug; 136(4):384-94. PubMed ID: 19470095 [TBL] [Abstract][Full Text] [Related]
8. Vitis Resistance to Pierce's Disease Is Characterized by Differential Xylella fastidiosa Populations in Stems and Leaves. Krivanek AF; Walker MA Phytopathology; 2005 Jan; 95(1):44-52. PubMed ID: 18943835 [TBL] [Abstract][Full Text] [Related]
9. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. Chatelet DS; Wistrom CM; Purcell AH; Rost TL; Matthews MA Ann Bot; 2011 Jul; 108(1):73-85. PubMed ID: 21546428 [TBL] [Abstract][Full Text] [Related]
10. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. Choi HK; Iandolino A; da Silva FG; Cook DR Mol Plant Microbe Interact; 2013 Jun; 26(6):643-57. PubMed ID: 23425100 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Baccari C; Lindow SE Phytopathology; 2011 Jan; 101(1):77-84. PubMed ID: 20822432 [TBL] [Abstract][Full Text] [Related]
12. Impact of phenolic compounds on progression of Xylella fastidiosa infections in susceptible and PdR1-locus containing resistant grapevines. Wallis CM; Zeilinger AR; Sicard A; Beal DJ; Walker MA; Almeida RPP PLoS One; 2020; 15(8):e0237545. PubMed ID: 32764829 [TBL] [Abstract][Full Text] [Related]
13. Hypervariations of a protease-encoding gene, PD0218 (pspB), in Xylella fastidiosa strains causing almond leaf scorch and Pierce's disease in California. Chen J; Civerolo E; Tubajika K; Livingston S; Higbee B Appl Environ Microbiol; 2008 Jun; 74(12):3652-7. PubMed ID: 18456854 [TBL] [Abstract][Full Text] [Related]
14. Allopatric Plant Pathogen Population Divergence following Disease Emergence. Castillo AI; Bojanini I; Chen H; Kandel PP; De La Fuente L; Almeida RPP Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33483307 [TBL] [Abstract][Full Text] [Related]
15. Field-Collected Glassy-Winged Sharpshooters (Hemiptera: Cicadellidae) Perform More Xylella fastidiosa-Inoculating Behaviors on Susceptible Vitis vinifera cv. 'Chardonnay' Than on Resistant Vitis champinii Grapevines. Backus EA; Shugart HJ; Gutierrez J; Ebert TA; Walker MA J Econ Entomol; 2021 Oct; 114(5):1991-2008. PubMed ID: 34494096 [TBL] [Abstract][Full Text] [Related]
16. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce's Disease of grapevine. Aldrich TJ; Rolshausen PE; Roper MC; Reader JM; Steinhaus MJ; Rapicavoli J; Vosburg DA; Maloney KN Phytochemistry; 2015 Aug; 116():130-137. PubMed ID: 25892412 [TBL] [Abstract][Full Text] [Related]
17. Diagnosis of Pierce's disease using biomarkers specific to Xylella fastidiosa rRNA and Vitis vinifera gene expression. Choi HK; Goes da Silva F; Lim HJ; Iandolino A; Seo YS; Lee SW; Cook DR Phytopathology; 2010 Oct; 100(10):1089-99. PubMed ID: 20839944 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic inference enables reconstruction of a long-overlooked outbreak of almond leaf scorch disease (Xylella fastidiosa) in Europe. Moralejo E; Gomila M; Montesinos M; Borràs D; Pascual A; Nieto A; Adrover F; Gost PA; Seguí G; Busquets A; Jurado-Rivera JA; Quetglas B; García JD; Beidas O; Juan A; Velasco-Amo MP; Landa BB; Olmo D Commun Biol; 2020 Oct; 3(1):560. PubMed ID: 33037293 [TBL] [Abstract][Full Text] [Related]
19. A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Doucleff M; Jin Y; Gao F; Riaz S; Krivanek AF; Walker MA Theor Appl Genet; 2004 Oct; 109(6):1178-87. PubMed ID: 15292989 [TBL] [Abstract][Full Text] [Related]
20. Fine-scale genetic mapping of two Pierce's disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Riaz S; Tenscher AC; Rubin J; Graziani R; Pao SS; Walker MA Theor Appl Genet; 2008 Sep; 117(5):671-81. PubMed ID: 18516585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]