These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15864596)

  • 1. Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.
    Ridgel AL; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jun; 191(6):559-73. PubMed ID: 15864596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending control of body attitude in the cockroach Blaberus discoidalis and its role in incline climbing.
    Ritzmann RE; Pollack AJ; Archinal J; Ridgel AL; Quinn RD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Mar; 191(3):253-64. PubMed ID: 15309482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae.
    Johnston RM; Levine RB
    Invert Neurosci; 2002 Oct; 4(4):175-92. PubMed ID: 12488968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach.
    Ridgel AL; Ritzmann RE; Schaefer PL
    J Exp Biol; 2003 Dec; 206(Pt 24):4453-65. PubMed ID: 14610030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
    Mu L; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Nov; 191(11):1037-54. PubMed ID: 16258746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending influences on escape behavior and motor pattern in the cockroach.
    Schaefer PL; Ritzmann RE
    J Neurobiol; 2001 Oct; 49(1):9-28. PubMed ID: 11536194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antennal motor activity induced by pilocarpine in the American cockroach.
    Okada J; Morimoto Y; Toh Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Apr; 195(4):351-63. PubMed ID: 19184040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between descending input and thoracic reflexes for joint coordination in cockroach. II comparative studies on tethered turning and searching.
    Mu L; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):299-312. PubMed ID: 18094975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking.
    Quimby LA; Amer AS; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Mar; 192(3):247-66. PubMed ID: 16362305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine.
    Ryckebusch S; Laurent G
    J Neurophysiol; 1993 May; 69(5):1583-95. PubMed ID: 8389831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crawling motor patterns induced by pilocarpine in isolated larval nerve cords of Manduca sexta.
    Johnston RM; Levine RB
    J Neurophysiol; 1996 Nov; 76(5):3178-95. PubMed ID: 8930265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending control of turning behavior in the cockroach, Blaberus discoidalis.
    Ridgel AL; Alexander BE; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):385-402. PubMed ID: 17123086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.
    Büschges A
    J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement.
    Watson JT; Ritzmann RE; Pollack AJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Feb; 188(1):55-69. PubMed ID: 11935230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
    Hooper SL; Guschlbauer C; Blümel M; Rosenbaum P; Gruhn M; Akay T; Büschges A
    J Neurosci; 2009 Apr; 29(13):4109-19. PubMed ID: 19339606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between descending input and thoracic reflexes for joint coordination in cockroach: I. descending influence on thoracic sensory reflexes.
    Mu L; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):283-98. PubMed ID: 18094976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel motor pathways from thoracic interneurons of the ventral giant interneuron system of the cockroach, Periplaneta americana.
    Ritzmann RE; Pollack AJ
    J Neurobiol; 1990 Dec; 21(8):1219-35. PubMed ID: 2273401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.