These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 15865408)

  • 1. The function of Alr1p of Saccharomyces cerevisiae in cadmium detoxification: insights from phylogenetic studies and particle-induced X-ray emission.
    Kern AL; Bonatto D; Dias JF; Yoneama ML; Brendel M; Pêgas Henriques JA
    Biometals; 2005 Feb; 18(1):31-41. PubMed ID: 15865408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomerization of the Mg2+-transport proteins Alr1p and Alr2p in yeast plasma membrane.
    Wachek M; Aichinger MC; Stadler JA; Schweyen RJ; Graschopf A
    FEBS J; 2006 Sep; 273(18):4236-49. PubMed ID: 16903865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation.
    Graschopf A; Stadler JA; Hoellerer MK; Eder S; Sieghardt M; Kohlwein SD; Schweyen RJ
    J Biol Chem; 2001 May; 276(19):16216-22. PubMed ID: 11279208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion.
    MacDiarmid CW; Gardner RC
    J Biol Chem; 1998 Jan; 273(3):1727-32. PubMed ID: 9430719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters.
    da Costa BM; Cornish K; Keasling JD
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):411-25. PubMed ID: 17926032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues.
    Rosakis A; Köster W
    Biometals; 2005 Feb; 18(1):107-20. PubMed ID: 15865416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large Mg(2+)-dependent currents are associated with the increased expression of ALR1 in Saccharomyces cerevisiae.
    Liu GJ; Martin DK; Gardner RC; Ryan PR
    FEMS Microbiol Lett; 2002 Aug; 213(2):231-7. PubMed ID: 12167543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residues of the yeast ALR1 protein that are critical for magnesium uptake.
    Lee JM; Gardner RC
    Curr Genet; 2006 Jan; 49(1):7-20. PubMed ID: 16328501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cadmium uptake by Saccharomyces cerevisiae.
    Gomes DS; Fragoso LC; Riger CJ; Panek AD; Eleutherio EC
    Biochim Biophys Acta; 2002 Oct; 1573(1):21-5. PubMed ID: 12383937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily.
    Knoop V; Groth-Malonek M; Gebert M; Eifler K; Weyand K
    Mol Genet Genomics; 2005 Oct; 274(3):205-16. PubMed ID: 16179994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pmr1 protein, the major yeast Ca2+-ATPase in the Golgi, regulates intracellular levels of the cadmium ion.
    Lauer Júnior CM; Bonatto D; Mielniczki-Pereira AA; Schuch AZ; Dias JF; Yoneama ML; Pêgas Henriques JA
    FEMS Microbiol Lett; 2008 Aug; 285(1):79-88. PubMed ID: 18510555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.
    Clemens S; Antosiewicz DM; Ward JM; Schachtman DP; Schroeder JI
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):12043-8. PubMed ID: 9751787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Plaza S; Tearall KL; Zhao FJ; Buchner P; McGrath SP; Hawkesford MJ
    J Exp Bot; 2007; 58(7):1717-28. PubMed ID: 17404382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense.
    Persans MW; Nieman K; Salt DE
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9995-10000. PubMed ID: 11481436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for zinc and cadmium binding in a CDF transporter lacking the cytoplasmic domain.
    Russell D; Soulimane T
    FEBS Lett; 2012 Dec; 586(24):4332-8. PubMed ID: 23127559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect of zinc transporter ZRT1 ameliorates cadmium induced lipid accumulation in Saccharomyces cerevisiae.
    Rajakumar S; Ravi C; Nachiappan V
    Metallomics; 2016 Apr; 8(4):453-60. PubMed ID: 26999708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial magnesium transport: unusual transporters searching for identity.
    Smith RL; Maguire ME
    Mol Microbiol; 1998 Apr; 28(2):217-26. PubMed ID: 9622348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of the N-terminal extension for vacuolar trafficking and transport activity of yeast Ycf1p, an ATP-binding cassette transporter.
    Mason DL; Michaelis S
    Mol Biol Cell; 2002 Dec; 13(12):4443-55. PubMed ID: 12475964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance to cadmium, cobalt, zinc, and nickel in microbes.
    Nies DH
    Plasmid; 1992 Jan; 27(1):17-28. PubMed ID: 1741458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM-EDX and XAFS.
    Chen C; Wang J
    Appl Microbiol Biotechnol; 2008 May; 79(2):293-9. PubMed ID: 18414849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.