These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 15865450)
1. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
2. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
3. In vitro effects of a C4'-oxidized abasic site on DNA polymerases. Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603 [TBL] [Abstract][Full Text] [Related]
4. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha. Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376 [TBL] [Abstract][Full Text] [Related]
5. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site. Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253 [TBL] [Abstract][Full Text] [Related]
6. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023 [TBL] [Abstract][Full Text] [Related]
7. Effect of DNA polymerase beta loop variants on discrimination of O6-methyldeoxyguanosine modification present in the nucleotide versus template substrate. Hamid S; Eckert KA Biochemistry; 2005 Aug; 44(30):10378-87. PubMed ID: 16042415 [TBL] [Abstract][Full Text] [Related]
8. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Lam WC; Van der Schans EJ; Sowers LC; Millar DP Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936 [TBL] [Abstract][Full Text] [Related]
9. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related]
10. In vitro replication and repair of DNA containing a C2'-oxidized abasic site. Greenberg MM; Weledji YN; Kroeger KM; Kim J Biochemistry; 2004 Dec; 43(48):15217-22. PubMed ID: 15568814 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of DNA polymerase I (Klenow fragment exo-) activity on damaged DNA templates: effect of proximal and distal template damage on DNA synthesis. Miller H; Grollman AP Biochemistry; 1997 Dec; 36(49):15336-42. PubMed ID: 9398262 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of bypass synthesis through an abasic site analog by DNA polymerase I. Paz-Elizur T; Takeshita M; Livneh Z Biochemistry; 1997 Feb; 36(7):1766-73. PubMed ID: 9048560 [TBL] [Abstract][Full Text] [Related]
13. Structure of purine-purine mispairs during misincorporation and extension by Escherichia coli DNA polymerase I. Kretulskie AM; Spratt TE Biochemistry; 2006 Mar; 45(11):3740-6. PubMed ID: 16533057 [TBL] [Abstract][Full Text] [Related]
14. Sequence context modulation of translesion synthesis at a single N-2-acetylaminofluorene adduct located within a mutation hot spot. Burnouf DY; Miturski R; Fuchs RP Chem Res Toxicol; 1999 Feb; 12(2):144-50. PubMed ID: 10027791 [TBL] [Abstract][Full Text] [Related]
15. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions. Eckert KA; Opresko PL Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863 [TBL] [Abstract][Full Text] [Related]
16. Klenow fragment-DNA interaction required for the incorporation of nucleotides opposite guanine and O6-methylguanine. Spratt TE Biochemistry; 1997 Oct; 36(43):13292-7. PubMed ID: 9341220 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis. Lone S; Romano LJ Biochemistry; 2003 Apr; 42(13):3826-34. PubMed ID: 12667073 [TBL] [Abstract][Full Text] [Related]
18. Effect of 3' flanking neighbors on kinetics of pairing of dCTP or dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Escherichia coli DNA polymerase I is used. Singer B; Chavez F; Goodman MF; Essigmann JM; Dosanjh MK Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8271-4. PubMed ID: 2682644 [TBL] [Abstract][Full Text] [Related]
19. Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA. Spratt TE Biochemistry; 2001 Mar; 40(9):2647-52. PubMed ID: 11258875 [TBL] [Abstract][Full Text] [Related]
20. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A; Singh K; Modak MJ Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]