BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15866044)

  • 1. Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury.
    Li S; Kim JE; Budel S; Hampton TG; Strittmatter SM
    Mol Cell Neurosci; 2005 May; 29(1):26-39. PubMed ID: 15866044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury.
    Wang X; Zhou T; Maynard GD; Terse PS; Cafferty WB; Kocsis JD; Strittmatter SM
    Brain; 2020 Jun; 143(6):1697-1713. PubMed ID: 32375169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord.
    Reginensi D; Carulla P; Nocentini S; Seira O; Serra-Picamal X; Torres-Espín A; Matamoros-Angles A; Gavín R; Moreno-Flores MT; Wandosell F; Samitier J; Trepat X; Navarro X; del Río JA
    Cell Mol Life Sci; 2015 Jul; 72(14):2719-37. PubMed ID: 25708702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial.
    Howard EM; Strittmatter SM
    Curr Opin Neurol; 2023 Dec; 36(6):516-522. PubMed ID: 37865850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury.
    Brambilla R; Hurtado A; Persaud T; Esham K; Pearse DD; Oudega M; Bethea JR
    J Neurochem; 2009 Jul; 110(2):765-78. PubMed ID: 19522780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes.
    Menet V; Prieto M; Privat A; Giménez y Ribotta M
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8999-9004. PubMed ID: 12861073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disinhibition of neurite growth to repair the injured adult CNS: focusing on Nogo.
    Gonzenbach RR; Schwab ME
    Cell Mol Life Sci; 2008 Jan; 65(1):161-76. PubMed ID: 17975707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olfactory ensheathing cell phenotype following implantation in the lesioned spinal cord.
    Woodhall E; West AK; Vickers JC; Chuah MI
    Cell Mol Life Sci; 2003 Oct; 60(10):2241-53. PubMed ID: 14618270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nogo receptor-Fc delivered by haematopoietic cells enhances neurorepair in a multiple sclerosis model.
    Ye S; Theotokis P; Lee JY; Kim MJ; Nheu D; Ellen O; Bedford T; Ramanujam P; Wright DK; McDonald SJ; Alrehaili A; Bakhuraysah M; Kang JH; Siatskas C; Tremblay CS; Curtis DJ; Grigoriadis N; Monif M; Strittmatter SM; Petratos S
    Brain Commun; 2023; 5(2):fcad108. PubMed ID: 37091588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma.
    Sekine Y; Kannan R; Wang X; Strittmatter SM
    Exp Neurol; 2022 Jul; 353():114070. PubMed ID: 35398339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury.
    Fakhri S; Abbaszadeh F; Moradi SZ; Cao H; Khan H; Xiao J
    Oxid Med Cell Longev; 2022; 2022():8100195. PubMed ID: 35035667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleic Acid Vaccine Targeting Nogo-66 Receptor and Paired Immunoglobulin-Like Receptor B as an Immunotherapy Strategy for Spinal Cord Injury in Rats.
    Lu XM; Mao M; Xiao L; Yu Y; He M; Zhao GY; Tang JJ; Feng S; Li S; He CM; Wang YT
    Neurotherapeutics; 2019 Apr; 16(2):381-393. PubMed ID: 30843154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment with a Gamma-Secretase Inhibitor Promotes Functional Recovery in Human iPSC- Derived Transplants for Chronic Spinal Cord Injury.
    Okubo T; Nagoshi N; Kohyama J; Tsuji O; Shinozaki M; Shibata S; Kase Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2018 Dec; 11(6):1416-1432. PubMed ID: 30503258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury.
    Quraishe S; Forbes LH; Andrews MR
    Neural Plast; 2018; 2018():2952386. PubMed ID: 29849554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal models of spinal cord injury: a systematic review.
    Sharif-Alhoseini M; Khormali M; Rezaei M; Safdarian M; Hajighadery A; Khalatbari MM; Safdarian M; Meknatkhah S; Rezvan M; Chalangari M; Derakhshan P; Rahimi-Movaghar V
    Spinal Cord; 2017 Aug; 55(8):714-721. PubMed ID: 28117332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphism within a Neuronal Activity-Dependent Enhancer of NgR1 Is Associated with Corpus Callosum Morphology in Humans.
    Isobe M; Tanigaki K; Muraki K; Miyata J; Takemura A; Sugihara G; Takahashi H; Aso T; Fukuyama H; Hazama M; Murai T
    Mol Neuropsychiatry; 2015 Jul; 1(2):105-15. PubMed ID: 27602360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1-/- Mice.
    Fink KL; Strittmatter SM; Cafferty WB
    J Neurosci; 2015 Nov; 35(46):15403-18. PubMed ID: 26586827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extrinsic and intrinsic regulation of axon regeneration at a crossroads.
    Kaplan A; Ong Tone S; Fournier AE
    Front Mol Neurosci; 2015; 8():27. PubMed ID: 26136657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments.
    del Mar N; von Buttlar X; Yu AS; Guley NH; Reiner A; Honig MG
    Exp Neurol; 2015 Sep; 271():53-71. PubMed ID: 25957630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravitreal delivery of human NgR-Fc decoy protein regenerates axons after optic nerve crush and protects ganglion cells in glaucoma models.
    Wang X; Lin J; Arzeno A; Choi JY; Boccio J; Frieden E; Bhargava A; Maynard G; Tsai JC; Strittmatter SM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(2):1357-66. PubMed ID: 25655801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.