These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 15866197)

  • 1. Homeostatic plasticity and NMDA receptor trafficking.
    Pérez-Otaño I; Ehlers MD
    Trends Neurosci; 2005 May; 28(5):229-38. PubMed ID: 15866197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity.
    Jiang J; Suppiramaniam V; Wooten MW
    Neurosignals; 2006-2007; 15(5):266-82. PubMed ID: 17622793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state.
    Montgomery JM; Selcher JC; Hanson JE; Madison DV
    BMC Neurosci; 2005 Jul; 6():48. PubMed ID: 16042781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses.
    Pérez-Otaño I; Ehlers MD
    Neurosignals; 2004; 13(4):175-89. PubMed ID: 15148446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders.
    Lau CG; Zukin RS
    Nat Rev Neurosci; 2007 Jun; 8(6):413-26. PubMed ID: 17514195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeostatic synaptic plasticity as a metaplasticity mechanism - a molecular and cellular perspective.
    Li J; Park E; Zhong LR; Chen L
    Curr Opin Neurobiol; 2019 Feb; 54():44-53. PubMed ID: 30212714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of homeostatic plasticity in the excitatory synapse.
    Fernandes D; Carvalho AL
    J Neurochem; 2016 Dec; 139(6):973-996. PubMed ID: 27241695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPAR trafficking in synapse maturation and plasticity.
    Bassani S; Folci A; Zapata J; Passafaro M
    Cell Mol Life Sci; 2013 Dec; 70(23):4411-30. PubMed ID: 23475111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling.
    Lisman J
    Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1715):. PubMed ID: 28093558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA-receptor inhibition restores Protease-Activated Receptor 1 (PAR1) mediated alterations in homeostatic synaptic plasticity of denervated mouse dentate granule cells.
    Becker D; Ikenberg B; Schiener S; Maggio N; Vlachos A
    Neuropharmacology; 2014 Nov; 86():212-8. PubMed ID: 25086265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity.
    Carroll RC; Zukin RS
    Trends Neurosci; 2002 Nov; 25(11):571-7. PubMed ID: 12392932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions of kinesin superfamily proteins in neuroreceptor trafficking.
    Wang N; Xu J
    Biomed Res Int; 2015; 2015():639301. PubMed ID: 26075252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.
    Sweatt JD
    J Neurochem; 2016 May; 137(3):312-30. PubMed ID: 26849493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-dependent alterations of long-term synaptic plasticity in thyroid-deficient rats.
    Vara H; Muñoz-Cuevas J; Colino A
    Hippocampus; 2003; 13(7):816-25. PubMed ID: 14620877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMDA and AMPA receptors: old channels, new tricks.
    Rao VR; Finkbeiner S
    Trends Neurosci; 2007 Jun; 30(6):284-91. PubMed ID: 17418904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal synaptic metaplasticity requires the activation of NR2B-containing NMDA receptors.
    Yang Q; Liao ZH; Xiao YX; Lin QS; Zhu YS; Li ST
    Brain Res Bull; 2011 Feb; 84(2):137-43. PubMed ID: 21184813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experience-dependent changes in NMDA receptor composition at mature central synapses.
    Kopp C; Longordo F; Lüthi A
    Neuropharmacology; 2007 Jul; 53(1):1-9. PubMed ID: 17499817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures.
    Buckby LE; Jensen TP; Smith PJ; Empson RM
    Mol Cell Neurosci; 2006 Apr; 31(4):805-16. PubMed ID: 16500111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell adhesion and homeostatic synaptic plasticity.
    Thalhammer A; Cingolani LA
    Neuropharmacology; 2014 Mar; 78():23-30. PubMed ID: 23542441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.