BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 15866726)

  • 1. Characterisation of tyrosine-phosphorylation-defective calmodulin mutants.
    Salas V; Sánchez-Torres J; Cusidó-Hita DM; García-Marchan Y; Sojo F; Benaim G; Villalobo A
    Protein Expr Purif; 2005 Jun; 41(2):384-92. PubMed ID: 15866726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of Thr654 but not Thr669 within the juxtamembrane domain of the EGF receptor inhibits calmodulin binding.
    Aifa S; Frikha F; Miled N; Johansen K; Lundström I; Svensson SP
    Biochem Biophys Res Commun; 2006 Aug; 347(2):381-7. PubMed ID: 16793002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of phospho-(tyrosine)-mimetic calmodulin mutants.
    Stateva SR; Salas V; Benaim G; Menéndez M; Solís D; Villalobo A
    PLoS One; 2015; 10(4):e0120798. PubMed ID: 25830911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activating role of phospho-(Tyr)-calmodulin on the epidermal growth factor receptor.
    Stateva SR; Salas V; Benguría A; Cossío I; Anguita E; Martín-Nieto J; Benaim G; Villalobo A
    Biochem J; 2015 Dec; 472(2):195-204. PubMed ID: 26399481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels.
    VanScyoc WS; Newman RA; Sorensen BR; Shea MA
    Biochemistry; 2006 Dec; 45(48):14311-24. PubMed ID: 17128970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
    Spratt DE; Newman E; Mosher J; Ghosh DK; Salerno JC; Guillemette JG
    FEBS J; 2006 Apr; 273(8):1759-71. PubMed ID: 16623711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase.
    Bartlett RK; Bieber Urbauer RJ; Anbanandam A; Smallwood HS; Urbauer JL; Squier TC
    Biochemistry; 2003 Mar; 42(11):3231-8. PubMed ID: 12641454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ser515 phosphorylation-independent regulation of cytosolic phospholipase A2alpha (cPLA2alpha) by calmodulin-dependent protein kinase: possible interaction with catalytic domain A of cPLA2alpha.
    Shimizu M; Nakamura H; Hirabayashi T; Suganami A; Tamura Y; Murayama T
    Cell Signal; 2008 May; 20(5):815-24. PubMed ID: 18280113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial expression and characterization of catalytic loop mutants of SRC protein tyrosine kinase.
    Kemble DJ; Wang YH; Sun G
    Biochemistry; 2006 Dec; 45(49):14749-54. PubMed ID: 17144667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a novel calcium/calmodulin-dependent protein kinase, AtCK, from arabidopsis.
    Jeong JC; Shin D; Lee J; Kang CH; Baek D; Cho MJ; Kim MC; Yun DJ
    Mol Cells; 2007 Oct; 24(2):276-82. PubMed ID: 17978582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 matrix protein p17.
    Izumi Y; Watanabe H; Watanabe N; Aoyama A; Jinbo Y; Hayashi N
    Biochemistry; 2008 Jul; 47(27):7158-66. PubMed ID: 18553937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata.
    Li S; Xie L; Ma Z; Zhang R
    FEBS J; 2005 Oct; 272(19):4899-910. PubMed ID: 16176264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2007 Jul; 46(28):8288-300. PubMed ID: 17580957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium and lanthanide affinity of the EF-loops from the C-terminal domain of calmodulin.
    Ye Y; Lee HW; Yang W; Yang JJ
    J Inorg Biochem; 2005 Jun; 99(6):1376-83. PubMed ID: 15917089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated EGF receptor may balance ERK-inhibitory network signalling pathways.
    Hanke S; Valkova C; Stirnweiss J; Drube S; Liebmann C
    Cell Signal; 2006 Jul; 18(7):1031-40. PubMed ID: 16226010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation by oncogenic mutants and ligand-dependent activation of FLT3 wild-type requires the tyrosine residues 589 and 591.
    Vempati S; Reindl C; Wolf U; Kern R; Petropoulos K; Naidu VM; Buske C; Hiddemann W; Kohl TM; Spiekermann K
    Clin Cancer Res; 2008 Jul; 14(14):4437-45. PubMed ID: 18628457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective nitration of Tyr99 in calmodulin as a marker of cellular conditions of oxidative stress.
    Smallwood HS; Galeva NA; Bartlett RK; Urbauer RJ; Williams TD; Urbauer JL; Squier TC
    Chem Res Toxicol; 2003 Jan; 16(1):95-102. PubMed ID: 12693036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design of calmodulin mutants with up to 900-fold increase in binding specificity.
    Yosef E; Politi R; Choi MH; Shifman JM
    J Mol Biol; 2009 Feb; 385(5):1470-80. PubMed ID: 18845160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the human calmodulin-like protein expressed in Escherichia coli.
    Rhyner JA; Koller M; Durussel-Gerber I; Cox JA; Strehler EE
    Biochemistry; 1992 Dec; 31(51):12826-32. PubMed ID: 1334432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.