These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 15866952)
1. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. Carrió MM; Villaverde A J Bacteriol; 2005 May; 187(10):3599-601. PubMed ID: 15866952 [TBL] [Abstract][Full Text] [Related]
2. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. González-Montalbán N; Carrió MM; Cuatrecasas S; Arís A; Villaverde A J Biotechnol; 2005 Sep; 118(4):406-12. PubMed ID: 16024126 [TBL] [Abstract][Full Text] [Related]
3. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443 [TBL] [Abstract][Full Text] [Related]
4. Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Georgopoulos C Genetics; 2006 Dec; 174(4):1699-707. PubMed ID: 17182732 [No Abstract] [Full Text] [Related]
5. Role of molecular chaperones in inclusion body formation. Carrió MM; Villaverde A FEBS Lett; 2003 Feb; 537(1-3):215-21. PubMed ID: 12606060 [TBL] [Abstract][Full Text] [Related]
6. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Chen Y; Song J; Sui SF; Wang DN Protein Expr Purif; 2003 Dec; 32(2):221-31. PubMed ID: 14965767 [TBL] [Abstract][Full Text] [Related]
7. GroEL to DnaK chaperone network behind the stability modulation of σ(32) at physiological temperature in Escherichia coli. Patra M; Roy SS; Dasgupta R; Basu T FEBS Lett; 2015 Dec; 589(24 Pt B):4047-52. PubMed ID: 26545493 [TBL] [Abstract][Full Text] [Related]
8. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. Thomas JG; Baneyx F J Biol Chem; 1996 May; 271(19):11141-7. PubMed ID: 8626659 [TBL] [Abstract][Full Text] [Related]
9. Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli. Kyratsous CA; Panagiotidis CA Methods Mol Biol; 2012; 824():109-29. PubMed ID: 22160895 [TBL] [Abstract][Full Text] [Related]
10. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Kerner MJ; Naylor DJ; Ishihama Y; Maier T; Chang HC; Stines AP; Georgopoulos C; Frishman D; Hayer-Hartl M; Mann M; Hartl FU Cell; 2005 Jul; 122(2):209-20. PubMed ID: 16051146 [TBL] [Abstract][Full Text] [Related]
11. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302 [TBL] [Abstract][Full Text] [Related]
12. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. El Hage A; Sbaï M; Alix JH Mol Gen Genet; 2001 Feb; 264(6):796-808. PubMed ID: 11254127 [TBL] [Abstract][Full Text] [Related]
13. [Proteins induction by cysteamine in Escherichia coli cells]. Suslov AV; Suslova IN Radiats Biol Radioecol; 1998; 38(4):488-94. PubMed ID: 9765666 [TBL] [Abstract][Full Text] [Related]
14. Extremely low frequency magnetic field exposure affects DnaK and GroEL expression in E. coli cells with impaired heat shock response. Del Re B; Marcantonio P; Bersani F; Giorgi G Gen Physiol Biophys; 2009 Dec; 28(4):420-4. PubMed ID: 20097965 [TBL] [Abstract][Full Text] [Related]
15. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. Buchberger A; Schröder H; Hesterkamp T; Schönfeld HJ; Bukau B J Mol Biol; 1996 Aug; 261(3):328-33. PubMed ID: 8780775 [TBL] [Abstract][Full Text] [Related]
16. GroEL chaperone binding to beetle luciferases and the implications for refolding when co-expressed. Venkatesh B; Arifuzzaman M; Mori H; Taguchi T; Ohmiya Y Biosci Biotechnol Biochem; 2004 Oct; 68(10):2096-103. PubMed ID: 15502355 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of GroEL, DnaK and other proteins from Thiobacillus ferrooxidans grown under different conditions. Seeger M; Osorio G; Jerez CA FEMS Microbiol Lett; 1996 May; 138(2-3):129-34. PubMed ID: 9026439 [TBL] [Abstract][Full Text] [Related]
18. Heat shock proteins and inflammatory acne vulgaris: molecular cloning, overexpression and purification of a propionibacterium acnes GroEL and DnaK homologue. Farrar MD; Ingham E; Holland KT FEMS Microbiol Lett; 2000 Oct; 191(2):183-6. PubMed ID: 11024261 [TBL] [Abstract][Full Text] [Related]
19. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. Mogk A; Tomoyasu T; Goloubinoff P; Rüdiger S; Röder D; Langen H; Bukau B EMBO J; 1999 Dec; 18(24):6934-49. PubMed ID: 10601016 [TBL] [Abstract][Full Text] [Related]
20. A chaperone network controls the heat shock response in E. coli. Guisbert E; Herman C; Lu CZ; Gross CA Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]