These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 15867160)
1. Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Varadarajan N; Gam J; Olsen MJ; Georgiou G; Iverson BL Proc Natl Acad Sci U S A; 2005 May; 102(19):6855-60. PubMed ID: 15867160 [TBL] [Abstract][Full Text] [Related]
2. Utilization of Escherichia coli outer-membrane endoprotease OmpT variants as processing enzymes for production of peptides from designer fusion proteins. Okuno K; Yabuta M; Ooi T; Kinoshita S Appl Environ Microbiol; 2004 Jan; 70(1):76-86. PubMed ID: 14711628 [TBL] [Abstract][Full Text] [Related]
3. Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries. Dekker N; Cox RC; Kramer RA; Egmond MR Biochemistry; 2001 Feb; 40(6):1694-701. PubMed ID: 11327829 [TBL] [Abstract][Full Text] [Related]
4. Substrate specificity of the Escherichia coli outer membrane protease OmpP. Hwang BY; Varadarajan N; Li H; Rodriguez S; Iverson BL; Georgiou G J Bacteriol; 2007 Jan; 189(2):522-30. PubMed ID: 17085556 [TBL] [Abstract][Full Text] [Related]
5. Proteases that can distinguish among different post-translational forms of tyrosine engineered using multicolor flow cytometry. Varadarajan N; Pogson M; Georgiou G; Iverson BL J Am Chem Soc; 2009 Dec; 131(50):18186-90. PubMed ID: 19924991 [TBL] [Abstract][Full Text] [Related]
6. An analysis of target preferences of Escherichia coli outer-membrane endoprotease OmpT for use in therapeutic peptide production: efficient cleavage of substrates with basic amino acids at the P4 and P6 positions. Okuno K; Yabuta M; Ohsuye K; Ooi T; Kinoshita S Biotechnol Appl Biochem; 2002 Oct; 36(2):77-84. PubMed ID: 12241547 [TBL] [Abstract][Full Text] [Related]
7. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
9. Construction and flow cytometric screening of targeted enzyme libraries. Varadarajan N; Cantor JR; Georgiou G; Iverson BL Nat Protoc; 2009; 4(6):893-901. PubMed ID: 19478805 [TBL] [Abstract][Full Text] [Related]
10. Function-based isolation of novel enzymes from a large library. Olsen MJ; Stephens D; Griffiths D; Daugherty P; Georgiou G; Iverson BL Nat Biotechnol; 2000 Oct; 18(10):1071-4. PubMed ID: 11017045 [TBL] [Abstract][Full Text] [Related]
11. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study. Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763 [TBL] [Abstract][Full Text] [Related]
12. Peptidase activity of the Escherichia coli Hsp31 chaperone. Malki A; Caldas T; Abdallah J; Kern R; Eckey V; Kim SJ; Cha SS; Mori H; Richarme G J Biol Chem; 2005 Apr; 280(15):14420-6. PubMed ID: 15550391 [TBL] [Abstract][Full Text] [Related]
13. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates. Ballinger MD; Tom J; Wells JA Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial Peptide Conformation as a Structural Determinant of Omptin Protease Specificity. Brannon JR; Thomassin JL; Gruenheid S; Le Moual H J Bacteriol; 2015 Nov; 197(22):3583-91. PubMed ID: 26350132 [TBL] [Abstract][Full Text] [Related]
15. Arg(1098) is critical for the chloride dependence of human angiotensin I-converting enzyme C-domain catalytic activity. Liu X; Fernandez M; Wouters MA; Heyberger S; Husain A J Biol Chem; 2001 Sep; 276(36):33518-25. PubMed ID: 11432860 [TBL] [Abstract][Full Text] [Related]
16. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel. Yan X; Wang J; Sun Y; Zhu J; Wu S Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682 [TBL] [Abstract][Full Text] [Related]
17. Importance of Amino Acids, Gln-119 and Tyr-376, in the S1 Pocket of Escherichia coli Peptidase N in Determining Substrate Specificity. Das M; Bhosale M; Wadhwa N; Ahmed SM; Bhaskarla C; Kumar A; Srinivasan N; Nandi D Protein Pept Lett; 2016; 23(6):548-61. PubMed ID: 26927617 [TBL] [Abstract][Full Text] [Related]
18. Probing the mechanism of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity. Brown AK; Sridharan S; Kremer L; Lindenberg S; Dover LG; Sacchettini JC; Besra GS J Biol Chem; 2005 Sep; 280(37):32539-47. PubMed ID: 16040614 [TBL] [Abstract][Full Text] [Related]
19. Leukotriene A4 hydrolase, insights into the molecular evolution by homology modeling and mutational analysis of enzyme from Saccharomyces cerevisiae. Tholander F; Kull F; Ohlson E; Shafqat J; Thunnissen MM; Haeggström JZ J Biol Chem; 2005 Sep; 280(39):33477-86. PubMed ID: 16024909 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the substrate specificity of Factor VII activating protease (FSAP) and design of specific and sensitive peptide substrates. Kara E; Manna D; Løset GÅ; Schneider EL; Craik CS; Kanse S Thromb Haemost; 2017 Aug; 117(9):1750-1760. PubMed ID: 28726978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]