These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15868)

  • 21. Light-influenced ATPase activity: bacterial.
    Horio T; Horiuti Y; Yamamoto N; Nishikawa K
    Methods Enzymol; 1972; 24():96-103. PubMed ID: 4274342
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores.
    Guillory RJ; Fisher RR
    Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface charge modifications do not affect the hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum.
    Sosa A; Celis H
    Biochem Mol Biol Int; 1993 Aug; 30(6):1135-41. PubMed ID: 8220258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton-translocating pyrophosphatase of Rhodospirillum rubrum.
    Moyle J; Mitchell R; Mitchell P
    FEBS Lett; 1972 Jun; 23(2):233-6. PubMed ID: 4343931
    [No Abstract]   [Full Text] [Related]  

  • 25. Restoration of active calcium transport in vesicles of an Mg2+-ATPase mutant of Escherichia coli by wild-type Mg2+-ATPase.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1975 Apr; 63(4):832-8. PubMed ID: 124173
    [No Abstract]   [Full Text] [Related]  

  • 26. Reversible conversion from Ca(2)+-ATPase activity to Mg(2)+- and Mn(2)+-ATPase activities of coupling factor purified from acetone powder of Rhodospirillum rubrum chromatophores.
    Soe G; Nishi N; Kakuno T; Yamashita J
    J Biochem; 1978 Oct; 84(4):805-14. PubMed ID: 30771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amount and turnover rate of the F0F1-ATPase and the stoichiometry of its inhibition by oligomycin in Rhodospirillum rubrum chromatophores.
    Norling B; Strid A; Tourikas C; Nyrén P
    Eur J Biochem; 1989 Dec; 186(1-2):333-7. PubMed ID: 2532130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling factors ATPases from photosynthetic bacteria.
    Melandri BA; Melandri AB
    J Bioenerg; 1976 Apr; 8(2):109-19. PubMed ID: 134033
    [No Abstract]   [Full Text] [Related]  

  • 29. Interaction of a coupling factor from Rhodospirillum rubrum with coupling factor deficient chromatophores.
    Pfluger UN; Dahl JS; Lutz HU; Bachofen R
    Arch Microbiol; 1975 Jun; 104(2):179-84. PubMed ID: 125569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Necessity of a membrane component for nitrogenase activity in Rhodospirillum rubrum.
    Nordlund S; Eriksson U; Baltscheffsky H
    Biochim Biophys Acta; 1977 Oct; 462(1):187-95. PubMed ID: 410446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitive measurement of flash induced photophosphorylation in bacterial chromatophores by firefly luciferase.
    Lundin A; Thore A; Baltscheffsky M
    FEBS Lett; 1977 Jul; 79(1):73-6. PubMed ID: 408188
    [No Abstract]   [Full Text] [Related]  

  • 32. Mg2+ is an essential activator of hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum.
    Sosa A; Ordaz H; Romero I; Celis H
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):561-6. PubMed ID: 1315519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolution and reconstitution of Rhodospirillum rubrum pyridine dinucleotide transhydrogenase: localization of substrate binding sites.
    McFadden BJ; Fisher RR
    Arch Biochem Biophys; 1978 Oct; 190(2):820-8. PubMed ID: 102261
    [No Abstract]   [Full Text] [Related]  

  • 34. Diethylstilbestrol. Interactions with membranes and proteins and the different effects upon Ca2+- and Mg2+-dependent activities of the F1-ATPase from Rhodospirillum rubrum.
    Strid A; Nyrén P; Baltscheffsky M
    Eur J Biochem; 1988 Sep; 176(2):281-5. PubMed ID: 2901353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification, subunit structure, and kinetics of the chloroform-released F1ATPase complex from Rhodospirillum rubrum and its comparison with F1ATPase forms isolated by other methods.
    Müller HW; Schwuléra U; Salzer M; Dose K
    Z Naturforsch C Biosci; 1979; 34(1-2):38-45. PubMed ID: 155949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy-linked reactions in photosynthetic bacteria: Pi in equilibrium with HOH oxygen exchange catalyzed by the membrane-bound inorganic pyrophosphatase of Rhodospirillum rubrum.
    Harvey GW; Keister DL
    Arch Biochem Biophys; 1981 May; 208(2):426-30. PubMed ID: 6114711
    [No Abstract]   [Full Text] [Related]  

  • 37. Reconstitution of highly purified proton-translocating pyrophosphatase from Rhodospirillum rubrum.
    Shakhov YA; Nyrén P; Baltscheffsky M
    FEBS Lett; 1982 Sep; 146(1):177-80. PubMed ID: 6128256
    [No Abstract]   [Full Text] [Related]  

  • 38. Immunological and fluorescence studies with the coupling factor ATPase from Rhodospirillum rubrum.
    Berzborn RJ; Johansson BC; Baltscheffsky M
    Biochim Biophys Acta; 1975 Sep; 396(3):360-70. PubMed ID: 126080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pH dependences of reactions catalyzed by the complete proton-translocating transhydrogenase from Rhodospirillum rubrum, and by the complex formed from its recombinant nucleotide-binding domains.
    Bizouarn T; Stilwell S; Venning J; Cotton NP; Jackson JB
    Biochim Biophys Acta; 1997 Nov; 1322(1):19-32. PubMed ID: 9398076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Membrane potential in the chromatophores of Rhodospirillum rubrum conditioned by a transhydrogenase reaction].
    Ostroumov SA; Samuilov VD; Skulachev VP
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1974; 2():92-5. PubMed ID: 4150987
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.