BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 15868101)

  • 1. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding.
    Tenzer S; Peters B; Bulik S; Schoor O; Lemmel C; Schatz MM; Kloetzel PM; Rammensee HG; Schild H; Holzhütter HG
    Cell Mol Life Sci; 2005 May; 62(9):1025-37. PubMed ID: 15868101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imatinib mesylate and nilotinib affect MHC-class I presentation by modulating the proteasomal processing of antigenic peptides.
    Held SA; Duchardt KM; Tenzer S; Rückrich T; von Schwarzenberg K; Bringmann A; Kurts C; Schild H; Driessen C; Brossart P; Heine A
    Cancer Immunol Immunother; 2013 Apr; 62(4):715-26. PubMed ID: 23184338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-proteasomal and proteasome-independent generation of MHC class I ligands.
    van Endert P
    Cell Mol Life Sci; 2011 May; 68(9):1553-67. PubMed ID: 21390545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands.
    Mester G; Hoffmann V; Stevanović S
    Cell Mol Life Sci; 2011 May; 68(9):1521-32. PubMed ID: 21387142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging roles of immunoproteasomes beyond MHC class I antigen processing.
    Ebstein F; Kloetzel PM; Krüger E; Seifert U
    Cell Mol Life Sci; 2012 Aug; 69(15):2543-58. PubMed ID: 22382925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide Splicing in the Proteasome Creates a Novel Type of Antigen with an Isopeptide Linkage.
    Berkers CR; de Jong A; Schuurman KG; Linnemann C; Geenevasen JA; Schumacher TN; Rodenko B; Ovaa H
    J Immunol; 2015 Nov; 195(9):4075-84. PubMed ID: 26401000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of MHC class I presented peptides that enhance immunogenicity.
    Calis JJ; Maybeno M; Greenbaum JA; Weiskopf D; De Silva AD; Sette A; Keşmir C; Peters B
    PLoS Comput Biol; 2013 Oct; 9(10):e1003266. PubMed ID: 24204222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A community resource benchmarking predictions of peptide binding to MHC-I molecules.
    Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A
    PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NetCTLpan: pan-specific MHC class I pathway epitope predictions.
    Stranzl T; Larsen MV; Lundegaard C; Nielsen M
    Immunogenetics; 2010 Jun; 62(6):357-68. PubMed ID: 20379710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method.
    Peters B; Sette A
    BMC Bioinformatics; 2005 May; 6():132. PubMed ID: 15927070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetMHCpan, a method for MHC class I binding prediction beyond humans.
    Hoof I; Peters B; Sidney J; Pedersen LE; Sette A; Lund O; Buus S; Nielsen M
    Immunogenetics; 2009 Jan; 61(1):1-13. PubMed ID: 19002680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.
    Jurtz V; Paul S; Andreatta M; Marcatili P; Peters B; Nielsen M
    J Immunol; 2017 Nov; 199(9):3360-3368. PubMed ID: 28978689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus.
    Moutaftsi M; Peters B; Pasquetto V; Tscharke DC; Sidney J; Bui HH; Grey H; Sette A
    Nat Biotechnol; 2006 Jul; 24(7):817-9. PubMed ID: 16767078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gapped sequence alignment using artificial neural networks: application to the MHC class I system.
    Andreatta M; Nielsen M
    Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
    Nielsen M; Lundegaard C; Lund O
    BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions.
    Larsen MV; Lundegaard C; Lamberth K; Buus S; Brunak S; Lund O; Nielsen M
    Eur J Immunol; 2005 Aug; 35(8):2295-303. PubMed ID: 15997466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity.
    Paul S; Weiskopf D; Angelo MA; Sidney J; Peters B; Sette A
    J Immunol; 2013 Dec; 191(12):5831-9. PubMed ID: 24190657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design.
    Fleri W; Paul S; Dhanda SK; Mahajan S; Xu X; Peters B; Sette A
    Front Immunol; 2017; 8():278. PubMed ID: 28352270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-cell epitope prediction methods: an overview.
    Desai DV; Kulkarni-Kale U
    Methods Mol Biol; 2014; 1184():333-64. PubMed ID: 25048134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.