BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 15868101)

  • 21. Generation of in silico predicted coxsackievirus B3-derived MHC class I epitopes by proteasomes.
    Voigt A; Jäkel S; Textoris-Taube K; Keller C; Drung I; Szalay G; Klingel K; Henklein P; Stangl K; Kloetzel PM; Kuckelkorn U
    Amino Acids; 2010 Jun; 39(1):243-55. PubMed ID: 19997756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing the N-terminal processing motif of MHC class I ligands.
    Schatz MM; Peters B; Akkad N; Ullrich N; Martinez AN; Carroll O; Bulik S; Rammensee HG; van Endert P; Holzhütter HG; Tenzer S; Schild H
    J Immunol; 2008 Mar; 180(5):3210-7. PubMed ID: 18292545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of proteasome cleavage motifs by neural networks.
    Keşmir C; Nussbaum AK; Schild H; Detours V; Brunak S
    Protein Eng; 2002 Apr; 15(4):287-96. PubMed ID: 11983929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudomonas aeruginosa Cif protein enhances the ubiquitination and proteasomal degradation of the transporter associated with antigen processing (TAP) and reduces major histocompatibility complex (MHC) class I antigen presentation.
    Bomberger JM; Ely KH; Bangia N; Ye S; Green KA; Green WR; Enelow RI; Stanton BA
    J Biol Chem; 2014 Jan; 289(1):152-62. PubMed ID: 24247241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing.
    Strehl B; Seifert U; Krüger E; Heink S; Kuckelkorn U; Kloetzel PM
    Immunol Rev; 2005 Oct; 207():19-30. PubMed ID: 16181324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An immunological glimpse of human virus peptides: Distance from self, MHC class I binding, proteasome cleveage, TAP transport and sequence composition entropy.
    Santoni D; Felici G
    Virus Res; 2022 Aug; 317():198814. PubMed ID: 35588940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Lysine Residue at the C-Terminus of MHC Class I Ligands Correlates with Low C-Terminal Proteasomal Cleavage Probability.
    Schmalen A; Kammerl IE; Meiners S; Noessner E; Deeg CA; Hauck SM
    Biomolecules; 2023 Aug; 13(9):. PubMed ID: 37759700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MAPPP: MHC class I antigenic peptide processing prediction.
    Hakenberg J; Nussbaum AK; Schild H; Rammensee HG; Kuttler C; Holzhütter HG; Kloetzel PM; Kaufmann SH; Mollenkopf HJ
    Appl Bioinformatics; 2003; 2(3):155-8. PubMed ID: 15130801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome.
    Diez-Rivero CM; Lafuente EM; Reche PA
    BMC Bioinformatics; 2010 Sep; 11():479. PubMed ID: 20863374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TAPPred prediction of TAP-binding peptides in antigens.
    Bhasin M; Lata S; Raghava GP
    Methods Mol Biol; 2007; 409():381-6. PubMed ID: 18450016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autophagy and proteasome interconnect to coordinate cross-presentation through MHC class I pathway in B cells.
    Dasari V; Rehan S; Tey SK; Smyth MJ; Smith C; Khanna R
    Immunol Cell Biol; 2016 Nov; 94(10):964-974. PubMed ID: 27297581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of tripeptidyl peptidase II in MHC class I antigen processing - the end of controversies?
    Endert Pv
    Eur J Immunol; 2008 Mar; 38(3):609-13. PubMed ID: 18286570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of tripeptidyl peptidase II in the processing of Listeria monocytogenes-derived MHC class I-presented antigenic peptides.
    Grauling-Halama S; Bahr U; Schenk S; Geginat G
    Microbes Infect; 2009; 11(8-9):795-802. PubMed ID: 19426827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules.
    Daniel S; Brusic V; Caillat-Zucman S; Petrovsky N; Harrison L; Riganelli D; Sinigaglia F; Gallazzi F; Hammer J; van Endert PM
    J Immunol; 1998 Jul; 161(2):617-24. PubMed ID: 9670935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation.
    Momburg F; Ortiz-Navarrete V; Neefjes J; Goulmy E; van de Wal Y; Spits H; Powis SJ; Butcher GW; Howard JC; Walden P
    Nature; 1992 Nov; 360(6400):174-7. PubMed ID: 1299222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PCPS: A Web Server to Predict Proteasomal Cleavage Sites.
    Gomez-Perosanz M; Ras-Carmona A; Reche PA
    Methods Mol Biol; 2020; 2131():399-406. PubMed ID: 32162269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome.
    Lázaro S; Gamarra D; Del Val M
    Mol Immunol; 2015 Dec; 68(2 Pt A):72-6. PubMed ID: 26006050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional regulation of immunoproteasomes and transporter associated with antigen processing.
    Hwang LY; Lieu PT; Peterson PA; Yang Y
    Immunol Res; 2001; 24(3):245-72. PubMed ID: 11817324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage.
    Nielsen M; Lundegaard C; Lund O; Keşmir C
    Immunogenetics; 2005 Apr; 57(1-2):33-41. PubMed ID: 15744535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.