These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15868144)

  • 21. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116.
    Pérez-Rodríguez N; Pinheiro de Souza Oliveira R; Torrado Agrasar AM; Domínguez JM
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1677-1689. PubMed ID: 26476645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus.
    Zheng L; Zheng P; Sun Z; Bai Y; Wang J; Guo X
    Bioresour Technol; 2007 Mar; 98(5):1115-9. PubMed ID: 16782330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens.
    Narbad A; Gasson MJ
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1397-1405. PubMed ID: 9611814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.
    Graf N; Wenzel M; Altenbuchner J
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3511-21. PubMed ID: 26658822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of vanillic acid from vanillin by resting cells of Serratia marcescens.
    Perestelo F; Dalcón MA; de la Fuente G
    Appl Environ Microbiol; 1989 Jun; 55(6):1660-2. PubMed ID: 2669632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical investigation on the mechanisms and kinetics of OH/NO
    Sun Y; Liu L; Li M; Chen X; Xu F
    Chemosphere; 2022 Feb; 288(Pt 2):132544. PubMed ID: 34648789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.
    Fleige C; Hansen G; Kroll J; Steinbüchel A
    Appl Environ Microbiol; 2013 Jan; 79(1):81-90. PubMed ID: 23064333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167.
    Overhage J; Steinbüchel A; Priefert H
    J Biotechnol; 2006 Sep; 125(3):369-76. PubMed ID: 16677732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basidiomycota strains as whole-cell biocatalysts for the synthesis of high-value natural benzaldehydes.
    Serra S; Marzorati S; Szczepańska E; Strzała T; Boratyński F
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):113. PubMed ID: 38212964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of carboxylic acid reductase (CAR) from Thermothelomyces thermophila and its evaluation for vanillin synthesis.
    Horvat M; Fiume G; Fritsche S; Winkler M
    J Biotechnol; 2019 Oct; 304():44-51. PubMed ID: 31419454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass balance modeling of vanillin production from vanillic acid by cultures of the fungus Pycnoporus cinnabarinus in bioreactors.
    Bernard O; Bastin G; Stentelaire C; Lesage-Meessen L; Asther M
    Biotechnol Bioeng; 1999 Dec; 65(5):558-71. PubMed ID: 10516582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus - elucidation of metabolic pathways using [5-2H]-ferulic acid.
    Krings U; Pilawa S; Theobald C; Berger RG
    J Biotechnol; 2001 Feb; 85(3):305-14. PubMed ID: 11173097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroanalysis may be used in the vanillin biotechnological production.
    Giraud W; Mirabel M; Comtat M
    Appl Biochem Biotechnol; 2014 Feb; 172(4):1953-63. PubMed ID: 24307140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains.
    Zellner G; Kneifel H; Winter J
    Appl Environ Microbiol; 1990 Jul; 56(7):2228-33. PubMed ID: 2389937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Therapeutic Potential of Vanillin and its Main Metabolites to Regulate the Inflammatory Response and Oxidative Stress.
    Bezerra-Filho CSM; Barboza JN; Souza MTS; Sabry P; Ismail NSM; de Sousa DP
    Mini Rev Med Chem; 2019; 19(20):1681-1693. PubMed ID: 30864521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the inhibition of food spoilage yeasts by vanillin.
    Fitzgerald DJ; Stratford M; Narbad A
    Int J Food Microbiol; 2003 Sep; 86(1-2):113-22. PubMed ID: 12892926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.
    Ma XK; Daugulis AJ
    Bioprocess Biosyst Eng; 2014 May; 37(5):891-9. PubMed ID: 24078147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conversion of isoeugenol into vanillic acid by Pseudomonas putida I58 cells exhibiting high isoeugenol-degrading activity.
    Furukawa H; Morita H; Yoshida T; Nagasawa T
    J Biosci Bioeng; 2003; 96(4):401-3. PubMed ID: 16233545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering the activity and thermostability of a carboxylic acid reductase in the conversion of vanillic acid to vanillin.
    Ren Y; Qin Z; Li C; Yuan B; Yang Y; Qu G; Sun Z
    J Biotechnol; 2024 May; 386():19-27. PubMed ID: 38521166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.