These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 15868174)

  • 21. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anticipatory gaze strategies when grasping moving objects.
    Bulloch MC; Prime SL; Marotta JJ
    Exp Brain Res; 2015 Dec; 233(12):3413-23. PubMed ID: 26289482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task.
    Iversen IH; Matsuzawa T
    Anim Cogn; 2003 Sep; 6(3):169-83. PubMed ID: 12761656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sources of variability in interceptive movements.
    Brenner E; Smeets JB
    Exp Brain Res; 2009 May; 195(1):117-33. PubMed ID: 19283369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seeing the last part of a hitting movement is enough to adapt to a temporal delay.
    de la Malla C; López-Moliner J; Brenner E
    J Vis; 2012 Sep; 12(10):. PubMed ID: 22961221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinematics of fast hemiparetic aiming movements toward stationary and moving targets.
    Van Thiel E; Meulenbroek RG; Hulstijn W; Steenbergen B
    Exp Brain Res; 2000 May; 132(2):230-42. PubMed ID: 10853948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How efficient are central mechanisms for the learning and retention of coincident timing actions?
    Fleury M; Bard C; Teasdale N; Michaud D; Lamarre Y
    Neuropsychologia; 1999 Jun; 37(6):723-30. PubMed ID: 10390034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Models for the extrapolation of target motion for manual interception.
    Soechting JF; Juveli JZ; Rao HM
    J Neurophysiol; 2009 Sep; 102(3):1491-502. PubMed ID: 19571194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manual interception of moving targets in two dimensions: performance and space-time accuracy.
    Tresilian JR; Plooy AM; Marinovic W
    Brain Res; 2009 Jan; 1250():202-17. PubMed ID: 19028467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extrapolation of visual motion for manual interception.
    Soechting JF; Flanders M
    J Neurophysiol; 2008 Jun; 99(6):2956-67. PubMed ID: 18436629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hitting ability and perception of object's size: evidence for a negative relation.
    Kirsch W; Königstein E; Kunde W
    Atten Percept Psychophys; 2014 Aug; 76(6):1752-64. PubMed ID: 24811043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How moving backgrounds influence interception.
    Brenner E; Smeets JB
    PLoS One; 2015; 10(3):e0119903. PubMed ID: 25767873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial biases in motion extrapolation for manual interception.
    Reid SA; Dessing JC
    J Exp Psychol Hum Percept Perform; 2018 Jan; 44(1):38-52. PubMed ID: 28447848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intercepting accelerated moving targets: effects of practice on movement performance.
    Fialho JVAP; Tresilian JR
    Exp Brain Res; 2017 Apr; 235(4):1257-1268. PubMed ID: 28197673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The acquisition and implementation of the smoothness maximization motion strategy is dependent on spatial accuracy demands.
    Sosnik R; Flash T; Hauptmann B; Karni A
    Exp Brain Res; 2007 Jan; 176(2):311-31. PubMed ID: 16874514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indirect interception actions by blind and visually impaired perceivers: echolocation for interceptive actions.
    Vernat JP; Gordon MS
    Scand J Psychol; 2010 Feb; 51(1):75-83. PubMed ID: 19392947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How the required precision influences the way we intercept a moving object.
    Brenner E; Cañal-Bruland R; van Beers RJ
    Exp Brain Res; 2013 Oct; 230(2):207-18. PubMed ID: 23857171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reflexive limb selection and control of reach direction to moving targets in cats, monkeys, and humans.
    Perfiliev S; Isa T; Johnels B; Steg G; Wessberg J
    J Neurophysiol; 2010 Nov; 104(5):2423-32. PubMed ID: 20810693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Independent control of acceleration and direction of the hand when hitting moving targets.
    Brenner E; de Lussanet MH; Smeets JB
    Spat Vis; 2002; 15(2):129-40. PubMed ID: 11991570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.