These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15868721)

  • 1. On reducing abnormal hemodynamics in the femoral end-to-side anastomosis: the influence of mechanical factors.
    Brien TO; Walsh M; McGloughlin T
    Ann Biomed Eng; 2005 Mar; 33(3):310-22. PubMed ID: 15868721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering end-to-side anastomosis junction hemodynamics: the effects of flow-splitting.
    O'Brien T; Walsh M; McGloughlin T
    Med Eng Phys; 2006 Sep; 28(7):727-33. PubMed ID: 16337824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle hemodynamics analysis of Miller cuff arterial anastomosis.
    Longest PW; Kleinstreuer C; Archie JP
    J Vasc Surg; 2003 Dec; 38(6):1353-62. PubMed ID: 14681641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is there a haemodynamic advantage associated with cuffed arterial anastomoses?
    Cole JS; Watterson JK; O'Reilly MJ
    J Biomech; 2002 Oct; 35(10):1337-46. PubMed ID: 12231279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic simulations and computer-aided designs of graft-artery junctions.
    Lei M; Kleinstreuer C; Archie JP
    J Biomech Eng; 1997 Aug; 119(3):343-8. PubMed ID: 9285348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation.
    El Zahab Z; Divo E; Kassab A
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):35-47. PubMed ID: 20166238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of the haemodynamics at a patched arterial bypass anastomosis.
    Cole JS; Watterson JK; O'Reilly MJ
    Med Eng Phys; 2002 Jul; 24(6):393-401. PubMed ID: 12135648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the existence of an optimum end-to-side junctional geometry in peripheral bypass surgery--a computer generated study.
    Walsh MT; Kavanagh EG; O'Brien T; Grace PA; McGloughlin T
    Eur J Vasc Endovasc Surg; 2003 Dec; 26(6):649-56. PubMed ID: 14603426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses.
    Perktold K; Leuprecht A; Prosi M; Berk T; Czerny M; Trubel W; Schima H
    Ann Biomed Eng; 2002 Apr; 30(4):447-60. PubMed ID: 12085997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry.
    Heise M; Schmidt S; Krüger U; Rückert R; Rösler S; Neuhaus P; Settmacher U
    J Biomech; 2004 Jul; 37(7):1043-51. PubMed ID: 15165874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses.
    Bonert M; Myers JG; Fremes S; Williams J; Ethier CR
    Ann Biomed Eng; 2002 May; 30(5):599-611. PubMed ID: 12108835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.
    Van Tricht I; De Wachter D; Tordoir J; Verdonck P
    J Biomech; 2006; 39(2):226-36. PubMed ID: 16321624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses.
    Longest PW; Kleinstreuer C
    J Biomech Eng; 2003 Oct; 125(5):671-81. PubMed ID: 14618926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.