These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15868722)

  • 1. Optical transillumination tomography for imaging of tissue-engineered blood vessels.
    Gladish JC; Yao G; L'Heureux N; Haidekker MA
    Ann Biomed Eng; 2005 Mar; 33(3):323-7. PubMed ID: 15868722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast optical transillumination tomography with large-size projection acquisition.
    Huang HM; Xia J; Haidekker MA
    Ann Biomed Eng; 2008 Oct; 36(10):1699-707. PubMed ID: 18704687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transillumination optical tomography of tissue-engineered blood vessels: a Monte Carlo simulation.
    Yao G; Haidekker MA
    Appl Opt; 2005 Jul; 44(20):4265-71. PubMed ID: 16045214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional optical imaging of three-dimensional engineered tissue development.
    Tan W; Sendemir-Urkmez A; Fahrner LJ; Jamison R; Leckband D; Boppart SA
    Tissue Eng; 2004; 10(11-12):1747-56. PubMed ID: 15684683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the enhancement of three-dimensional diffraction tomography by using multiple illumination planes.
    Vouldis AT; Kechribaris CN; Maniatis TA; Nikita KS; Uzunoglu NK
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1251-62. PubMed ID: 16053146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superresolution of three-dimensional optical imaging by use of evanescent waves.
    Chaumet PC; Belkebir K; Sentenac A
    Opt Lett; 2004 Dec; 29(23):2740-2. PubMed ID: 15605490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography.
    Tomlins PH; Wang RK
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1897-907. PubMed ID: 16835647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doppler optical coherence tomography for measuring flow in engineered tissue.
    Mason C; Markusen JF; Town MA; Dunnill P; Wang RK
    Biosens Bioelectron; 2004 Oct; 20(3):414-23. PubMed ID: 15494219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional cellular-level imaging using full-field optical coherence tomography.
    Dubois A; Moneron G; Grieve K; Boccara AC
    Phys Med Biol; 2004 Apr; 49(7):1227-34. PubMed ID: 15128200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical transillumination tomography with tolerance against refraction mismatch.
    Haidekker MA
    Comput Methods Programs Biomed; 2005 Dec; 80(3):225-35. PubMed ID: 16257081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh-resolution full-field optical coherence tomography.
    Dubois A; Grieve K; Moneron G; Lecaque R; Vabre L; Boccara C
    Appl Opt; 2004 May; 43(14):2874-83. PubMed ID: 15143811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondestructive Monitoring of Degradable Scaffold-Based Tissue-Engineered Blood Vessel Development Using Optical Coherence Tomography.
    Chen W; Liu S; Yang J; Wu Y; Ma W; Lin Z
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse scattering for optical coherence tomography.
    Ralston TS; Marks DL; Carney PS; Boppart SA
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1027-37. PubMed ID: 16642179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography.
    Liu B; Harman M; Giattina S; Stamper DL; Demakis C; Chilek M; Raby S; Brezinski ME
    Appl Opt; 2006 Jun; 45(18):4464-79. PubMed ID: 16778957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation.
    Vakoc BJ; Yun SH; Tearney GJ; Bouma BE
    Opt Lett; 2006 Feb; 31(3):362-4. PubMed ID: 16480209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved reconstructions and generalized filtered back projection for optical projection tomography.
    Birk UJ; Darrell A; Konstantinides N; Sarasa-Renedo A; Ripoll J
    Appl Opt; 2011 Feb; 50(4):392-8. PubMed ID: 21283227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser.
    Amano T; Hiro-Oka H; Choi D; Furukawa H; Kano F; Takeda M; Nakanishi M; Shimizu K; Ohbayashi K
    Appl Opt; 2005 Feb; 44(5):808-16. PubMed ID: 15751863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image enhancement for multilayer information retrieval by using full-field optical coherence tomography.
    Chang S; Cai X; Flueraru C
    Appl Opt; 2006 Aug; 45(23):5967-75. PubMed ID: 16926885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse scattering for frequency-scanned full-field optical coherence tomography.
    Marks DL; Ralston TS; Boppart SA; Carney PS
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1034-41. PubMed ID: 17361289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.