BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15868741)

  • 21. Porosity of β-tricalcium phosphate affects the results of lumbar posterolateral fusion.
    Wang Z; Sakakibara T; Sudo A; Kasai Y
    J Spinal Disord Tech; 2013 Apr; 26(2):E40-5. PubMed ID: 22124423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Anterior Vertebral Interbody Fusion Using Osteogenic Mesenchymal Stem Cells Transplanted in Collagen Sponge.
    Yang W; Dong Y; Hong Y; Guang Q; Chen X
    Clin Spine Surg; 2016 May; 29(4):E201-7. PubMed ID: 22576723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion.
    Akamaru T; Suh D; Boden SD; Kim HS; Minamide A; Louis-Ugbo J
    Spine (Phila Pa 1976); 2003 Mar; 28(5):429-34. PubMed ID: 12616152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion.
    Gan Y; Dai K; Zhang P; Tang T; Zhu Z; Lu J
    Biomaterials; 2008 Oct; 29(29):3973-82. PubMed ID: 18639333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of autologous bone marrow mesenchymal stem cell-calcium phosphate ceramic composite for lumbar fusion in rhesus monkey interbody fusion model.
    Wang T; Dang G; Guo Z; Yang M
    Tissue Eng; 2005; 11(7-8):1159-67. PubMed ID: 16144452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery.
    Steffen T; Stoll T; Arvinte T; Schenk RK
    Eur Spine J; 2001 Oct; 10 Suppl 2(Suppl 2):S132-40. PubMed ID: 11716010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of strontium substituted ß-TCP associated to mesenchymal stem cells from bone marrow and adipose tissue on spinal fusion in healthy and ovariectomized rat.
    Salamanna F; Giavaresi G; Contartese D; Bigi A; Boanini E; Parrilli A; Lolli R; Gasbarrini A; Barbanti Brodano G; Fini M
    J Cell Physiol; 2019 Nov; 234(11):20046-20056. PubMed ID: 30950062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epidermal growth factor enhances spinal fusion: Posterolateral lumbar fusion model on rats.
    Çetin E; Daldal İ; Eren A; Akarca Dizakar SÖ; Ömeroğlu S; Uzuner B; Çelik HH; Saygılı HH; Koçkar B; Şenköylü A
    Acta Orthop Traumatol Turc; 2019 Mar; 53(2):134-139. PubMed ID: 30738625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.
    Hu MH; Lee PY; Chen WC; Hu JJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():82-8. PubMed ID: 25491804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Osteogenic potential of platelet-rich plasma combined with cells and artificial bone].
    Li S; Zhang C; Yuan T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):58-64. PubMed ID: 17305007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid grafting using bone marrow aspirate combined with porous β-tricalcium phosphate and trephine bone for lumbar posterolateral spinal fusion: a prospective, comparative study versus local bone grafting.
    Yamada T; Yoshii T; Sotome S; Yuasa M; Kato T; Arai Y; Kawabata S; Tomizawa S; Sakaki K; Hirai T; Shinomiya K; Okawa A
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E174-9. PubMed ID: 21673618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of posterolateral spinal fusion using mesenchymal stem cells: differences with or without osteogenic differentiation.
    Nakajima T; Iizuka H; Tsutsumi S; Kayakabe M; Takagishi K
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2432-6. PubMed ID: 18090081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Massive bone reconstruction with heat-treated bone graft loaded autologous bone marrow-derived stromal cells and β-tricalcium phosphate composites in canine models.
    Koyanagi H; Ae K; Maehara H; Yuasa M; Masaoka T; Yamada T; Taniyama T; Saito M; Funauchi Y; Yoshii T; Okawa A; Sotome S
    J Orthop Res; 2013 Aug; 31(8):1308-16. PubMed ID: 23589164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of fluorescence labeled mesenchymal stem cells in pluronic F127 and porous hydroxyapatite as a bone substitute for posterolateral spinal fusion.
    Chen WJ; Huang JW; Niu CC; Chen LH; Yuan LJ; Lai PL; Yang CY; Lin SS
    J Orthop Res; 2009 Dec; 27(12):1631-6. PubMed ID: 19489045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lumbar posterolateral fusion with biphasic calcium phosphate ceramic.
    Fujibayashi S; Shikata J; Tanaka C; Matsushita M; Nakamura T
    J Spinal Disord; 2001 Jun; 14(3):214-21. PubMed ID: 11389371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficacy of silicated calcium phosphate graft in posterolateral lumbar fusion in sheep.
    Wheeler DL; Jenis LG; Kovach ME; Marini J; Turner AS
    Spine J; 2007; 7(3):308-17. PubMed ID: 17482114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced spinal fusion using a biodegradable porous mesh container in a rat posterolateral spinal fusion model.
    Shin DA; Yang BM; Tae G; Kim YH; Kim HS; Kim HI
    Spine J; 2014 Mar; 14(3):408-15. PubMed ID: 24268394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autologous mesenchymal stromal cells embedded in tricalcium phosphate for posterolateral spinal fusion: results of a prospective phase I/II clinical trial with long-term follow-up.
    Blanco JF; Villarón EM; Pescador D; da Casa C; Gómez V; Redondo AM; López-Villar O; López-Parra M; Muntión S; Sánchez-Guijo F
    Stem Cell Res Ther; 2019 Feb; 10(1):63. PubMed ID: 30795797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of combined β-TCP/α-CSH artificial bone graft and its performance in a spinal fusion model.
    Mao K; Cui F; Li J; Hao L; Tang P; Wang Z; Wen N; Liang M; Wang J; Wang Y
    J Biomater Appl; 2012 Jul; 27(1):37-45. PubMed ID: 21343212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of hydrogels in the in vivo formation of tissue-engineered bone using mesenchymal stem cells and beta-tricalcium phosphate.
    Weinand C; Gupta R; Huang AY; Weinberg E; Madisch I; Qudsi RA; Neville CM; Pomerantseva I; Vacanti JP
    Tissue Eng; 2007 Apr; 13(4):757-65. PubMed ID: 17223744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.