BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15868785)

  • 21. Study of the chain microstructure effects on the resulting thermal properties of poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials.
    Lizundia E; Meaurio E; Laza JM; Vilas JL; León Isidro LM
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():97-106. PubMed ID: 25746250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents.
    Agrawal CM; Haas KF; Leopold DA; Clark HG
    Biomaterials; 1992; 13(3):176-82. PubMed ID: 1567942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tensile behavior and dynamic mechanical analysis of novel poly(lactide/δ-valerolactone) statistical copolymers.
    Fernández J; Larrañaga A; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Jul; 35():39-50. PubMed ID: 24732304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of hydroxylapatite/poly(L-lactide) composites: mechanical behavior.
    Verheyen CC; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res; 1992 Oct; 26(10):1277-96. PubMed ID: 1331112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of intrinsic characteristics on mechanical properties of poly(l-lactic acid) bioresorbable vascular stents.
    Hua R; Tian Y; Cheng J; Wu G; Jiang W; Ni Z; Zhao G
    Med Eng Phys; 2020 Jul; 81():118-124. PubMed ID: 32482508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation.
    Weir NA; Buchanan FJ; Orr JF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):307-19. PubMed ID: 15532996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of sterilization on the physicochemical properties of molded poly(L-lactic acid).
    Peniston SJ; Choi SJ
    J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):67-77. PubMed ID: 16767732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sterilization and strength of 70/30 polylactide cages: e-beam versus ethylene oxide.
    Smit TH; Thomas KA; Hoogendoorn RJ; Strijkers GJ; Helder MN; Wuisman PI
    Spine (Phila Pa 1976); 2007 Apr; 32(7):742-7. PubMed ID: 17414907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices.
    Zhao Y; Zhu B; Wang Y; Liu C; Shen C
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110041. PubMed ID: 31546462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Handling characteristics of poly(L-lactide-co-epsilon-caprolactone) monofilament suture.
    Tomihata K; Suzuki M; Tomita N
    Biomed Mater Eng; 2005; 15(5):381-91. PubMed ID: 16179759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro properties of PLLA screws and novel bioabsorbable implant with elastic nucleus to replace intervertebral disc.
    Ellä V; Kellomäki M; Törmälä P
    J Mater Sci Mater Med; 2005 Jul; 16(7):655-62. PubMed ID: 15965598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.
    Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF
    Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal processing and characterization of 316LVM cardiovascular stent.
    Verma A; Choubey A; Raval A; Kothwala D
    Biomed Mater Eng; 2006; 16(6):381-95. PubMed ID: 17119277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tensile testing of a single ultrafine polymeric fiber.
    Tan EP; Ng SY; Lim CT
    Biomaterials; 2005 May; 26(13):1453-6. PubMed ID: 15522746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of annealing 316 LVM stents.
    Meyer-Kobbe C; Hinrichs BH
    Med Device Technol; 2003; 14(1):20-5. PubMed ID: 12974121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films.
    Wang Y; Qin Y; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Jun; 67():58-63. PubMed ID: 24598202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.