These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15868794)

  • 1. Virtual slope control of a forward dynamic bipedal walker.
    Russell S; Granata KP; Sheth P
    J Biomech Eng; 2005 Feb; 127(1):114-22. PubMed ID: 15868794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns.
    Gregor RJ; Smith DW; Prilutsky BI
    J Neurophysiol; 2006 Mar; 95(3):1397-409. PubMed ID: 16207777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paired nonlinear behavior of active and passive joint torques associated with preparation for walk-to-run gait transition.
    Pan J; Zhang S; Li L
    J Electromyogr Kinesiol; 2021 Apr; 57():102527. PubMed ID: 33530026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of feedback and feedforward strategies to locomotor adaptations.
    Lam T; Anderschitz M; Dietz V
    J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of bipedal stance: the contribution of cocontraction and spindle feedback.
    van Soest AJ; Haenen WP; Rozendaal LA
    Biol Cybern; 2003 Apr; 88(4):293-301. PubMed ID: 12690488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait.
    Leteneur S; Gillet C; Sadeghi H; Allard P; Barbier F
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):190-5. PubMed ID: 19091448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.
    Markowitz J; Herr H
    PLoS Comput Biol; 2016 May; 12(5):e1004912. PubMed ID: 27175486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VI.1. Gait analysis and synthesis: biomechanics, orthotics, prosthetics.
    Matjacić Z
    Stud Health Technol Inform; 2010; 152():323-42. PubMed ID: 20407202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control.
    Verdaasdonk BW; Koopman HF; van der Helm FC
    Biol Cybern; 2009 Jul; 101(1):49-61. PubMed ID: 19504121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization-based prediction of asymmetric human gait.
    Xiang Y; Arora JS; Abdel-Malek K
    J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling initial contact dynamics during ambulation with dynamic simulation.
    Meyer AR; Wang M; Smith PA; Harris GF
    Med Biol Eng Comput; 2007 Apr; 45(4):387-94. PubMed ID: 17268804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of an unstable shoe construction on lower extremity gait characteristics.
    Nigg B; Hintzen S; Ferber R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):82-8. PubMed ID: 16209901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.