BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15868798)

  • 21. A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media.
    Ehlers W; Markert B
    J Biomech Eng; 2001 Oct; 123(5):418-24. PubMed ID: 11601726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study of preconditioned Krylov subspace methods with reordering for linear systems from a biphasic v-p finite element formulation.
    Yang T; Spilker RL
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):13-24. PubMed ID: 18651268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc.
    Ehlers W; Karajan N; Markert B
    Biomech Model Mechanobiol; 2009 Jun; 8(3):233-51. PubMed ID: 18661285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue.
    Perie DS; Maclean JJ; Owen JP; Iatridis JC
    Ann Biomed Eng; 2006 May; 34(5):769-77. PubMed ID: 16598654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ionised/non-ionised dual porosity model of intervertebral disc tissue.
    Huyghe JM; Houben GB; Drost MR; van Donkelaar CC
    Biomech Model Mechanobiol; 2003 Aug; 2(1):3-19. PubMed ID: 14586814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis.
    Lu XL; Wan LQ; Guo XE; Mow VC
    J Biomech; 2010 Mar; 43(4):673-9. PubMed ID: 19896670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High frequency ultrasound assesses transient changes in cartilage under osmotic loading.
    Zatloukalova J; Raum K
    Math Biosci Eng; 2020 Aug; 17(5):5190-5211. PubMed ID: 33120548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasound speed in articular cartilage under mechanical compression.
    Nieminen HJ; Julkunen P; Töyräs J; Jurvelin JS
    Ultrasound Med Biol; 2007 Nov; 33(11):1755-66. PubMed ID: 17693012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the inclusion of swelling pressure in a tissue level poroviscoelastic model of cartilage deformation.
    Whiteley JP; Gaffney EA
    Math Med Biol; 2020 Sep; 37(3):389-428. PubMed ID: 32072158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissues.
    Gu WY; Yao H
    Ann Biomed Eng; 2003 Nov; 31(10):1162-70. PubMed ID: 14649490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential.
    Lai WM; Mow VC; Sun DD; Ateshian GA
    J Biomech Eng; 2000 Aug; 122(4):336-46. PubMed ID: 11036556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method.
    Guo H; Spilker RL
    J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biorheology and fluid flux in swelling tissues. I. Bicomponent theory for small deformations, including concentration effects.
    Lanir Y
    Biorheology; 1987; 24(2):173-87. PubMed ID: 3651590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.