These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15868858)

  • 1. A simplified predictive control algorithm for disturbance rejection.
    Zhao F; Gupta YP
    ISA Trans; 2005 Apr; 44(2):187-98. PubMed ID: 15868858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feed-forward offset-free model predictive temperature control for proton exchange membrane fuel cell: An experimental study.
    Li G; Fu H; Madonski R; Czeczot J; Nowak P; Lakomy K; Sun L
    ISA Trans; 2022 Sep; 128(Pt B):159-170. PubMed ID: 34839905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-Based Predictive Control for Discrete-Time Nonlinear Systems With Stochastic Disturbances.
    Xu X; Chen H; Lian C; Li D
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6202-6213. PubMed ID: 29993751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance optimization of linear active disturbance rejection control approach by modified bat inspired algorithm for single area load frequency control concerning high wind power penetration.
    Ali S; Yang G; Huang C
    ISA Trans; 2018 Oct; 81():163-176. PubMed ID: 30072035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbance observer based adaptive model predictive control for uncalibrated visual servoing in constrained environments.
    Qiu Z; Hu S; Liang X
    ISA Trans; 2020 Nov; 106():40-50. PubMed ID: 32900474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage observer based offset-free MPC.
    Mohammadkhani M; Bayat F; Jalali AA
    ISA Trans; 2015 Jul; 57():136-43. PubMed ID: 25820088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose estimation and prediction through meal responses using ambulatory subject data for advisory mode model predictive control.
    Gillis R; Palerm CC; Zisser H; Jovanovic L; Seborg DE; Doyle FJ
    J Diabetes Sci Technol; 2007 Nov; 1(6):825-33. PubMed ID: 19885154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Output feedback model predictive control of hydraulic systems with disturbances compensation.
    Gu W; Yao J; Yao Z; Zheng J
    ISA Trans; 2019 May; 88():216-224. PubMed ID: 30580881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Formulation of Adaptive MPC as EKF Using ANN Model: Multiproduct Semibatch Polymerization Reactor Case Study.
    Kamesh R; Rani KY
    IEEE Trans Neural Netw Learn Syst; 2017 Dec; 28(12):3061-3073. PubMed ID: 28113411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of linear active disturbance rejection controller with robustness specification.
    Zhang B; Tan W; Li J
    ISA Trans; 2019 Feb; 85():237-246. PubMed ID: 30389246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model Reference Predictive Adaptive Control for Large-Scale Soft Robots.
    Hyatt P; Johnson CC; Killpack MD
    Front Robot AI; 2020; 7():558027. PubMed ID: 33501321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.
    van der Lee JH; Svrcek WY; Young BR
    ISA Trans; 2008 Jan; 47(1):53-9. PubMed ID: 17870075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disturbance-rejection-based tuning of proportional-integral-derivative controllers by exploiting closed-loop plant data.
    Jeng JC; Ge GP
    ISA Trans; 2016 May; 62():312-24. PubMed ID: 26922494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained computationally efficient nonlinear predictive control of Solid Oxide Fuel Cell: Tuning, feasibility and performance.
    Ławryńczuk M
    ISA Trans; 2020 Apr; 99():270-289. PubMed ID: 31676035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming.
    Dong L; Yan J; Yuan X; He H; Sun C
    IEEE Trans Cybern; 2019 Dec; 49(12):4206-4218. PubMed ID: 30130246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time model predictive control using a self-organizing neural network.
    Han HG; Wu XL; Qiao JF
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1425-36. PubMed ID: 24808579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced IMC design of load disturbance rejection for integrating and unstable processes with slow dynamics.
    Liu T; Gao F
    ISA Trans; 2011 Apr; 50(2):239-48. PubMed ID: 21159334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive active disturbance rejection control for processes with time delay.
    Zheng Q; Gao Z
    ISA Trans; 2014 Jul; 53(4):873-81. PubMed ID: 24182516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving disturbance rejection of PID controllers by means of the magnitude optimum method.
    Vrancić D; Strmcnik S; Kocijan J; de Moura Oliveira PB
    ISA Trans; 2010 Jan; 49(1):47-56. PubMed ID: 19733851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integral-Type Event-Triggered Model Predictive Control of Nonlinear Systems With Additive Disturbance.
    Sun Q; Chen J; Shi Y
    IEEE Trans Cybern; 2021 Dec; 51(12):5921-5929. PubMed ID: 31976923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.