BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15869295)

  • 21. Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes.
    Lee CK; Lin KS; Wu CF; Lyu MD; Lo CC
    J Hazard Mater; 2008 Feb; 150(3):494-503. PubMed ID: 17561342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous phase- and size-controlled synthesis of TiO(2) nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors.
    Koo B; Park J; Kim Y; Choi SH; Sung YE; Hyeon T
    J Phys Chem B; 2006 Dec; 110(48):24318-23. PubMed ID: 17134182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrared spectra of U.S. automobile original finishes. VII. Extended range FT-IR and XRF analyses of inorganic pigments in situ--nickel titanate and chrome titanate.
    Suzuki EM; McDermot MX
    J Forensic Sci; 2006 May; 51(3):532-47. PubMed ID: 16696700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cetyltrimethylammonium bromide-coated titanate nanotubes for solid-phase extraction of phthalate esters from natural waters prior to high-performance liquid chromatography analysis.
    Niu H; Cai Y; Shi Y; Wei F; Mou S; Jiang G
    J Chromatogr A; 2007 Nov; 1172(2):113-20. PubMed ID: 17963775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailored Hydrothermal Synthesis of Specific Facet-Dominated TiO
    Xu L; Fang H; Li S; Zhu J; Pan C; Pan Y; Feng Q
    Langmuir; 2020 Apr; 36(16):4477-4495. PubMed ID: 32233502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light.
    Yang Q; Xie C; Xu Z; Gao Z; Du Y
    J Phys Chem B; 2005 Mar; 109(12):5554-60. PubMed ID: 16851596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures.
    Dong W; Sun Y; Lee CW; Hua W; Lu X; Shi Y; Zhang S; Chen J; Zhao D
    J Am Chem Soc; 2007 Nov; 129(45):13894-904. PubMed ID: 17941637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titanate nanofibers.
    Hristovski K; Westerhoff P; Crittenden J
    J Hazard Mater; 2008 Aug; 156(1-3):604-11. PubMed ID: 18242828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.
    Lucky RA; Charpentier PA
    Nanotechnology; 2009 May; 20(19):195601. PubMed ID: 19420640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FTIR study on the formation of TiO2 nanostructures in supercritical CO2.
    Sui R; Rizkalla AS; Charpentier PA
    J Phys Chem B; 2006 Aug; 110(33):16212-8. PubMed ID: 16913745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ observation of the stability of anatase nanoparticles and their transformation to rutile in an acidic solution.
    Jung HS; Shin H; Kim JR; Kim JY; Hong KS; Lee JK
    Langmuir; 2004 Dec; 20(26):11732-7. PubMed ID: 15595805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation on transition crystal of ordinary rutile TiO2 powder and its sonocatalytic activity.
    Wang J; Ma T; Zhang Z; Zhang X; Jiang Y; Zhang G; Zhao G; Zhao H; Zhang P
    Ultrason Sonochem; 2007 Feb; 14(2):246-52. PubMed ID: 16843695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple and fast annealing synthesis of titanium dioxide nanostructures and morphology transformation during annealing processes.
    Park J; Ryu Y; Kim H; Yu C
    Nanotechnology; 2009 Mar; 20(10):105608. PubMed ID: 19417528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli.
    Joo J; Kwon SG; Yu T; Cho M; Lee J; Yoon J; Hyeon T
    J Phys Chem B; 2005 Aug; 109(32):15297-302. PubMed ID: 16852938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, characterization, and photocatalytic activity of TiO(2-x)N(x) nanocatalyst.
    Wang YQ; Yu XJ; Sun DZ
    J Hazard Mater; 2007 Jun; 144(1-2):328-33. PubMed ID: 17116365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile fabrication of hierarchical hollow microspheres assembled by titanate nanotubes.
    Tang Y; Yang L; Chen J; Qiu Z
    Langmuir; 2010 Jun; 26(12):10111-4. PubMed ID: 20429512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations.
    Ma R; Fukuda K; Sasaki T; Osada M; Bando Y
    J Phys Chem B; 2005 Apr; 109(13):6210-4. PubMed ID: 16851687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants.
    Conforto E; Caillard D; Müller L; Müller FA
    Acta Biomater; 2008 Nov; 4(6):1934-43. PubMed ID: 18585110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials.
    Morgado E; Jardim PM; Marinkovic BA; Rizzo FC; de Abreu MA; Zotin JL; Araújo AS
    Nanotechnology; 2007 Dec; 18(49):495710. PubMed ID: 20442491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates.
    Mao Y; Kanungo M; Hemraj-Benny T; Wong SS
    J Phys Chem B; 2006 Jan; 110(2):702-10. PubMed ID: 16471591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.