These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 15869432)

  • 21. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications.
    Orr DE; Burg KJ
    Ann Biomed Eng; 2008 Jul; 36(7):1228-41. PubMed ID: 18438713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel parallel shaken bioreactor system for continuous operation.
    Akgün A; Maier B; Preis D; Roth B; Klingelhöfer R; Büchs J
    Biotechnol Prog; 2004; 20(6):1718-24. PubMed ID: 15575704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of cell cultures in perfusion bioreactors.
    Yan X; Bergstrom DJ; Chen XB
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2568-75. PubMed ID: 22772976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process simulation in a mechatronic bioreactor device with speed-regulated motors for growing of three-dimensional cell cultures.
    Mihailova M; Trenev V; Genova P; Konstantinov S
    Ann N Y Acad Sci; 2006 Dec; 1091():470-89. PubMed ID: 17341637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.
    Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T
    J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilisation of a Bioreactor for Culture and Expansion of Epithelial Cells without the use of Trypsin or Enzymes.
    Miyazawa A; Washington J; Bingham EL; Kuo S; Feinberg SE
    Chin J Dent Res; 2018; 21(1):21-29. PubMed ID: 29507909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous glucose monitoring and control in a rotating wall perfused bioreactor.
    Xu Y; Sun J; Mathew G; Jeevarajan AS; Anderson MM
    Biotechnol Bioeng; 2004 Aug; 87(4):473-7. PubMed ID: 15286984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An actively mixed mini-bioreactor for protein production from suspended animal cells.
    Diao J; Young L; Zhou P; Shuler ML
    Biotechnol Bioeng; 2008 May; 100(1):72-81. PubMed ID: 18078290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.
    Zhang ZY; Teoh SH; Teo EY; Khoon Chong MS; Shin CW; Tien FT; Choolani MA; Chan JK
    Biomaterials; 2010 Nov; 31(33):8684-95. PubMed ID: 20739062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.
    Khan AA; Surrao DC
    Tissue Eng Part C Methods; 2012 May; 18(5):358-68. PubMed ID: 22092352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional high-density culture of HepG2 cells in a 5-ml radial-flow bioreactor for construction of artificial liver.
    Hongo T; Kajikawa M; Ishida S; Ozawa S; Ohno Y; Sawada J; Umezawa A; Ishikawa Y; Kobayashi T; Honda H
    J Biosci Bioeng; 2005 Mar; 99(3):237-44. PubMed ID: 16233783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue growth in a rotating bioreactor. Part I: mechanical stability.
    Waters SL; Cummings LJ; Shakesheff KM; Rose FR
    Math Med Biol; 2006 Dec; 23(4):311-37. PubMed ID: 16777926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems.
    Cummings LJ; Waters SL
    Math Med Biol; 2007 Jun; 24(2):169-208. PubMed ID: 17043081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using computational fluid dynamics to characterize and improve bioreactor performance.
    Kelly WJ
    Biotechnol Appl Biochem; 2008 Apr; 49(Pt 4):225-38. PubMed ID: 18338979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel bioreactors for the culture and expansion of aggregative neural stem cells.
    Ng YL; Chase HA
    Bioprocess Biosyst Eng; 2008 Aug; 31(5):393-400. PubMed ID: 18026758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale expansion of mammary epithelial stem cell aggregates in suspension bioreactors.
    Youn BS; Sen A; Kallos MS; Behie LA; Girgis-Gabardo A; Kurpios N; Barcelon M; Hassell JA
    Biotechnol Prog; 2005; 21(3):984-93. PubMed ID: 15932284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Renal epithelia in long term gradient culture for biomaterial testing and tissue engineering.
    Minuth WW; Schumacher K; Strehl R
    Biomed Mater Eng; 2005; 15(1-2):51-63. PubMed ID: 15623930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of a multicoaxial hollow fiber bioreactor.
    McClelland R; Tech K; Macdonald JM
    Methods Mol Biol; 2013; 1001():215-26. PubMed ID: 23494433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.