BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 15869460)

  • 1. Internal microdosimetry for single cells in radioimmunotherapy of B-cell lymphoma.
    Hindorf C; Emfietzoglou D; Lindén O; Kostarelos K; Strand SE
    Cancer Biother Radiopharm; 2005 Apr; 20(2):224-30. PubMed ID: 15869460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell dosimetry for radioimmunotherapy of B-cell lymphoma patients with special reference to leukemic spread.
    Hindorf C; Emfietzoglou D; Lindén O; Bousis C; Fotopoulos A; Kostarelos K; Flux GD
    Cancer Biother Radiopharm; 2007 Jun; 22(3):357-66. PubMed ID: 17651041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2010 May; 55(9):2555-72. PubMed ID: 20393237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo single-cell dosimetry of I-131, I-125 and I-123 for targeted radioimmunotherapy of B-cell lymphoma.
    Bousis C; Emfietzoglou D; Nikjoo H
    Int J Radiat Biol; 2012 Dec; 88(12):908-15. PubMed ID: 22348681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbed fractions for electrons in ellipsoidal volumes.
    Amato E; Lizio D; Baldari S
    Phys Med Biol; 2011 Jan; 56(2):357-65. PubMed ID: 21160113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of I-131 radioimmunotherapy tumor dosimetry: unit density sphere model versus patient-specific Monte Carlo calculations.
    Howard DM; Kearfott KJ; Wilderman SJ; Dewaraja YK
    Cancer Biother Radiopharm; 2011 Oct; 26(5):615-21. PubMed ID: 21939358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional transport model for determining absorbed fractions of energy for electrons within trabecular bone.
    Bouchet LG; Jokisch DW; Bolch WE
    J Nucl Med; 1999 Nov; 40(11):1947-66. PubMed ID: 10565793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in tumor-absorbed dose due to decrease in mass during fractionated radioimmunotherapy in lymphoma patients.
    Hindorf C; Lindén O; Stenberg L; Tennvall J; Strand SE
    Clin Cancer Res; 2003 Sep; 9(10 Pt 2):4003S-6S. PubMed ID: 14506200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorbed fractions for photons in ellipsoidal volumes.
    Amato E; Lizio D; Baldari S
    Phys Med Biol; 2009 Oct; 54(20):N479-87. PubMed ID: 19779222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy.
    Bordes J; Incerti S; Mora-Ramirez E; Tranel J; Rossi C; Bezombes C; Bordenave J; Bardiès M; Brown R; Bordage MC
    Med Phys; 2020 Oct; 47(10):5222-5234. PubMed ID: 32623743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides.
    Goddu SM; Rao DV; Howell RW
    J Nucl Med; 1994 Mar; 35(3):521-30. PubMed ID: 8113908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of methods for red marrow dosimetry based on patients undergoing radioimmunotherapy.
    Hindorf C; Lindén O; Tennvall J; Wingårdh K; Strand SE
    Acta Oncol; 2005; 44(6):579-88. PubMed ID: 16165917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorbed fractions for alpha particles in ellipsoidal volumes.
    Amato E; Italiano A; Baldari S
    Phys Med Biol; 2013 Aug; 58(16):5449-59. PubMed ID: 23877354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments.
    Goddu SM; Howell RW; Rao DV
    J Nucl Med; 1994 Feb; 35(2):303-16. PubMed ID: 8295004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.
    Wu J; Liu YL; Chang SJ; Chao MM; Tsai SY; Huang DE
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):119-24. PubMed ID: 22923242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry.
    Šefl M; Incerti S; Papamichael G; Emfietzoglou D
    Appl Radiat Isot; 2015 Oct; 104():113-23. PubMed ID: 26159660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.