BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15869464)

  • 1. Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications.
    Christensen B; Nielsen MS; Haselmann KF; Petersen TE; Sørensen ES
    Biochem J; 2005 Aug; 390(Pt 1):285-92. PubMed ID: 15869464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites.
    Sørensen ES; Højrup P; Petersen TE
    Protein Sci; 1995 Oct; 4(10):2040-9. PubMed ID: 8535240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry.
    Keykhosravani M; Doherty-Kirby A; Zhang C; Brewer D; Goldberg HA; Hunter GK; Lajoie G
    Biochemistry; 2005 May; 44(18):6990-7003. PubMed ID: 15865444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of two phosphorylation motifs in bovine osteopontin.
    Sørensen ES; Petersen TE
    Biochem Biophys Res Commun; 1994 Jan; 198(1):200-5. PubMed ID: 8292023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational modification and proteolytic processing of urinary osteopontin.
    Christensen B; Petersen TE; Sørensen ES
    Biochem J; 2008 Apr; 411(1):53-61. PubMed ID: 18072945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of anti-osteopontin monoclonal antibodies: Binding sensitivity to post-translational modifications.
    Kazanecki CC; Kowalski AJ; Ding T; Rittling SR; Denhardt DT
    J Cell Biochem; 2007 Nov; 102(4):925-35. PubMed ID: 17786932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of osteopontin by Golgi apparatus casein kinase.
    Lasa M; Chang PL; Prince CW; Pinna LA
    Biochem Biophys Res Commun; 1997 Nov; 240(3):602-5. PubMed ID: 9398611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific structural characterization of O-glycosylation and identification of phosphorylation sites of recombinant osteopontin.
    Li H; Shen H; Yan G; Zhang Y; Liu M; Fang P; Yu H; Yang P
    Biochim Biophys Acta; 2015 Jun; 1854(6):581-91. PubMed ID: 25450502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinases of cultured osteoblasts: selectivity for the extracellular matrix proteins of bone and their catalytic competence for osteopontin.
    Salih E; Ashkar S; Gerstenfeld LC; Glimcher MJ
    J Bone Miner Res; 1996 Oct; 11(10):1461-73. PubMed ID: 8889846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion.
    Razzouk S; Brunn JC; Qin C; Tye CE; Goldberg HA; Butler WT
    Bone; 2002 Jan; 30(1):40-7. PubMed ID: 11792563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational identification of interplay between phosphorylation and O-β-glycosylation of human occludin as potential mechanism to impair hepatitis C virus entry.
    Butt AM; Feng D; Nasrullah I; Tahir S; Idrees M; Tong Y; Lu J
    Infect Genet Evol; 2012 Aug; 12(6):1235-45. PubMed ID: 22516225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.
    Oyama M; Kariya Y; Kariya Y; Matsumoto K; Kanno M; Yamaguchi Y; Hashimoto Y
    Biochem J; 2018 May; 475(9):1583-1595. PubMed ID: 29626154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteopontin: it's role in regulation of cell motility and nuclear factor kappa B-mediated urokinase type plasminogen activator expression.
    Das R; Philip S; Mahabeleshwar GH; Bulbule A; Kundu GC
    IUBMB Life; 2005 Jun; 57(6):441-7. PubMed ID: 16012053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an avian bone sialoprotein (BSP) cDNA: comparisons to mammalian BSP and identification of conserved structural domains.
    Yang R; Gotoh Y; Moore MA; Rafidi K; Gerstenfeld LC
    J Bone Miner Res; 1995 Apr; 10(4):632-40. PubMed ID: 7610935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the phosphorylated sites of metabolically 32P-labeled osteopontin from cultured chicken osteoblasts.
    Salih E; Ashkar S; Gerstenfeld LC; Glimcher MJ
    J Biol Chem; 1997 May; 272(21):13966-73. PubMed ID: 9153260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties.
    Kariya Y; Kanno M; Matsumoto-Morita K; Konno M; Yamaguchi Y; Hashimoto Y
    Biochem J; 2014 Oct; 463(1):93-102. PubMed ID: 25000122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of recombinant osteopontin peptides representing matrix metalloproteinase proteolytic fragments.
    Gao YA; Agnihotri R; Vary CP; Liaw L
    Matrix Biol; 2004 Nov; 23(7):457-66. PubMed ID: 15579312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties.
    Christensen B; Kazanecki CC; Petersen TE; Rittling SR; Denhardt DT; Sørensen ES
    J Biol Chem; 2007 Jul; 282(27):19463-72. PubMed ID: 17500062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteopontin is highly susceptible to cleavage in bovine milk and the proteolytic fragments bind the αVβ₃-integrin receptor.
    Christensen B; Sørensen ES
    J Dairy Sci; 2014; 97(1):136-46. PubMed ID: 24268404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of dual alpha 4beta1 integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin.
    Bayless KJ; Davis GE
    J Biol Chem; 2001 Apr; 276(16):13483-9. PubMed ID: 11278897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.