These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15869524)

  • 1. Electrophysiological evidence for cortical plasticity with movement repetition.
    Halder P; Sterr A; Brem S; Bucher K; Kollias S; Brandeis D
    Eur J Neurosci; 2005 Apr; 21(8):2271-7. PubMed ID: 15869524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex.
    Antal A; Terney D; Poreisz C; Paulus W
    Eur J Neurosci; 2007 Nov; 26(9):2687-91. PubMed ID: 17970738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue in a simple repetitive motor task: a combined electrophysiological and neuropsychological study.
    Dirnberger G; Duregger C; Trettler E; Lindinger G; Lang W
    Brain Res; 2004 Nov; 1028(1):26-30. PubMed ID: 15518638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetrical facilitation of motor-evoked potentials following motor practice.
    Hammond GR; Vallence AM
    Neuroreport; 2006 May; 17(8):805-7. PubMed ID: 16708018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical activity prior to, and during, observation and execution of sequential finger movements.
    Calmels C; Holmes P; Jarry G; Lévèque JM; Hars M; Stam CJ
    Brain Topogr; 2006; 19(1-2):77-88. PubMed ID: 17136468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.
    Plautz EJ; Milliken GW; Nudo RJ
    Neurobiol Learn Mem; 2000 Jul; 74(1):27-55. PubMed ID: 10873519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral and electrophysiological evidence of motor cortex activation related to an amputated limb: a multisensorial approach.
    Touzalin-Chretien P; Ehrler S; Dufour A
    J Cogn Neurosci; 2009 Nov; 21(11):2207-16. PubMed ID: 19296727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivalent is not equal: primary motor cortex (MI) activation during motor imagery and execution of sequential movements.
    Carrillo-de-la-Peña MT; Galdo-Alvarez S; Lastra-Barreira C
    Brain Res; 2008 Aug; 1226():134-43. PubMed ID: 18590711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of cortical activity as a result of task-specific practice.
    Slobounov S; Ray W; Cao C; Chiang H
    Neurosci Lett; 2007 Jun; 421(2):126-31. PubMed ID: 17566654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements.
    Wheaton LA; Nolte G; Bohlhalter S; Fridman E; Hallett M
    Clin Neurophysiol; 2005 Jun; 116(6):1382-90. PubMed ID: 15978500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation.
    Ortu E; Ruge D; Deriu F; Rothwell JC
    Clin Neurophysiol; 2009 Jun; 120(6):1195-203. PubMed ID: 19410505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece.
    D'Ausilio A; Altenmüller E; Olivetti Belardinelli M; Lotze M
    Eur J Neurosci; 2006 Aug; 24(3):955-8. PubMed ID: 16930423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of intermittent theta-burst stimulation on practice-related changes in fast finger movements in healthy subjects.
    Agostino R; Iezzi E; Dinapoli L; Suppa A; Conte A; Berardelli A
    Eur J Neurosci; 2008 Aug; 28(4):822-8. PubMed ID: 18702693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practice-related modulations of force enslaving and cortical activity as revealed by EEG.
    Chiang H; Slobounov SM; Ray W
    Clin Neurophysiol; 2004 May; 115(5):1033-43. PubMed ID: 15066527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain activity preceding a 2D manual catching task.
    Tombini M; Zappasodi F; Zollo L; Pellegrino G; Cavallo G; Tecchio F; Guglielmelli E; Rossini PM
    Neuroimage; 2009 Oct; 47(4):1735-46. PubMed ID: 19389476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On variability and use of rat primary motor cortex responses in behavioral task discrimination.
    Jensen W; Rousche PJ
    J Neural Eng; 2006 Mar; 3(1):L7-13. PubMed ID: 16510934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortico-spinal synchronization reflects changes in performance when learning a complex bimanual task.
    Houweling S; van Dijk BW; Beek PJ; Daffertshofer A
    Neuroimage; 2010 Feb; 49(4):3269-75. PubMed ID: 19922805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermanual Differences in movement-related interhemispheric inhibition.
    Duque J; Murase N; Celnik P; Hummel F; Harris-Love M; Mazzocchio R; Olivier E; Cohen LG
    J Cogn Neurosci; 2007 Feb; 19(2):204-13. PubMed ID: 17280510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of force after action observation: behavioural and neurophysiological studies.
    Porro CA; Facchin P; Fusi S; Dri G; Fadiga L
    Neuropsychologia; 2007 Oct; 45(13):3114-21. PubMed ID: 17681358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.