These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. [The central role of the thymus in the education of T cells to neuroendocrine principles]. Geenen V Verh K Acad Geneeskd Belg; 1993; 55(1):79-87. PubMed ID: 8480448 [TBL] [Abstract][Full Text] [Related]
7. Thymus-dependent T cell tolerance of neuroendocrine functions: principles, reflections, and implications for tolerogenic/negative self-vaccination. Geenen V Ann N Y Acad Sci; 2006 Nov; 1088():284-96. PubMed ID: 17192574 [TBL] [Abstract][Full Text] [Related]
8. Aire and Foxp3 expression in a particular microenvironment for T cell differentiation. Hansenne I; Louis C; Martens H; Dorban G; Charlet-Renard C; Peterson P; Geenen V Neuroimmunomodulation; 2009 Jan; 16(1):35-44. PubMed ID: 19077444 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional regulation in thymic epithelial cells for the establishment of self tolerance. Matsumoto M Arch Immunol Ther Exp (Warsz); 2007; 55(1):27-34. PubMed ID: 17277892 [TBL] [Abstract][Full Text] [Related]
10. The role of the thymus in the integrated evolution of the recombinase-dependent adaptive immune response and the neuroendocrine system. Mottet M; Goffinet L; Beckers A; Bodart G; Morrhaye G; Kermani H; Renard C; Martens H; Geenen V Neuroimmunomodulation; 2011; 18(5):314-9. PubMed ID: 21952683 [TBL] [Abstract][Full Text] [Related]
11. Advances in type I diabetes associated tolerance mechanisms. Chentoufi AA; Binder NR; Berka N; Abunadi T; Polychronakos C Scand J Immunol; 2008 Jul; 68(1):1-11. PubMed ID: 18482207 [TBL] [Abstract][Full Text] [Related]
12. Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens. Sospedra M; Ferrer-Francesch X; DomÃnguez O; Juan M; Foz-Sala M; Pujol-Borrell R J Immunol; 1998 Dec; 161(11):5918-29. PubMed ID: 9834072 [TBL] [Abstract][Full Text] [Related]
13. The thymic repertoire of neuroendocrine-related self antigens: biological role in T-cell selection and pharmacological implications. Geenen V; Kecha O; Brilot F; Charlet-Renard C; Martens H Neuroimmunomodulation; 1999; 6(1-2):115-25. PubMed ID: 9876242 [TBL] [Abstract][Full Text] [Related]
15. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems. Geenen V Ann N Y Acad Sci; 2012 Jul; 1261():42-8. PubMed ID: 22823392 [TBL] [Abstract][Full Text] [Related]
16. Highly variable expression of tissue-restricted self-antigens in human thymus: implications for self-tolerance and autoimmunity. Taubert R; Schwendemann J; Kyewski B Eur J Immunol; 2007 Mar; 37(3):838-48. PubMed ID: 17323415 [TBL] [Abstract][Full Text] [Related]
17. Thymic involution: implications for self-tolerance. Hakim FT; Gress RE Methods Mol Biol; 2007; 380():377-90. PubMed ID: 17876107 [TBL] [Abstract][Full Text] [Related]
18. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Aschenbrenner K; D'Cruz LM; Vollmann EH; Hinterberger M; Emmerich J; Swee LK; Rolink A; Klein L Nat Immunol; 2007 Apr; 8(4):351-8. PubMed ID: 17322887 [TBL] [Abstract][Full Text] [Related]
19. Central tolerance: good but imperfect. Gallegos AM; Bevan MJ Immunol Rev; 2006 Feb; 209():290-6. PubMed ID: 16448550 [TBL] [Abstract][Full Text] [Related]
20. Development and evolutionary aspects of thymic T cell education to neuroendocrine self. Geenen V; Benhida A; Kecha O; Achour I; Vandermissen E; Vanneste Y; Goxe B; Martens H Acta Haematol; 1996; 95(3-4):263-7. PubMed ID: 8677753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]