BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 15869786)

  • 1. Investigating serpin-enzyme complex formation and stability via single and multiple residue reactive centre loop substitutions in heparin cofactor II.
    Sutherland JS; Bhakta V; Sheffield WP
    Thromb Res; 2006; 117(4):447-61. PubMed ID: 15869786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full or partial substitution of the reactive center loop of alpha-1-proteinase inhibitor by that of heparin cofactor II: P1 Arg is required for maximal thrombin inhibition.
    Filion ML; Bhakta V; Nguyen LH; Liaw PS; Sheffield WP
    Biochemistry; 2004 Nov; 43(46):14864-72. PubMed ID: 15544357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The appended tail region of heparin cofactor II and additional reactive centre loop mutations combine to increase the reactivity and specificity of alpha1-proteinase inhibitor M358R for thrombin.
    Sutherland JS; Bhakta V; Sheffield WP
    Thromb Haemost; 2007 Nov; 98(5):1014-23. PubMed ID: 18000606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transferable tail: fusion of the N-terminal acidic extension of heparin cofactor II to alpha1-proteinase inhibitor M358R specifically increases the rate of thrombin inhibition.
    Sutherland JS; Bhakta V; Filion ML; Sheffield WP
    Biochemistry; 2006 Sep; 45(38):11444-52. PubMed ID: 16981704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand binding to thrombin exosite II induces dissociation of the thrombin-heparin cofactor II(L444R) complex.
    Han JH; Tollefsen DM
    Biochemistry; 1998 Mar; 37(9):3203-9. PubMed ID: 9485475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the P6-P3' region of the serpin reactive loop in the formation and breakdown of the inhibitory complex.
    Plotnick MI; Schechter NM; Wang ZM; Liu X; Rubin H
    Biochemistry; 1997 Nov; 36(47):14601-8. PubMed ID: 9398179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering heparin cofactor II at VAL439 (P6) either impairs inhibition of thrombin or confers elastase resistance.
    Cunningham MA; Bhakta V; Sheffield WP
    Thromb Haemost; 2002 Jul; 88(1):89-97. PubMed ID: 12152684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparin cofactor II is more sensitive than antithrombin to secretory impairment arising from mutations introduced into its carboxy-terminal region.
    Bhakta V; Begbie ME; Gupta A; Sandhu V; Sheffield WP
    Thromb Res; 2004; 113(2):163-73. PubMed ID: 15115672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The P6-P2 region of serpins is critical for proteinase inhibition and complex stability.
    Chaillan-Huntington CE; Gettins PG; Huntington JA; Patston PA
    Biochemistry; 1997 Aug; 36(31):9562-70. PubMed ID: 9236002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand.
    Boyle AJ; Roddick LA; Bhakta V; Lambourne MD; Junop MS; Liaw PC; Weitz JI; Sheffield WP
    BMC Biochem; 2013 Mar; 14():6. PubMed ID: 23496873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparin facilitates dissociation of complexes between thrombin and a reactive site mutant (L444R) of heparin cofactor II.
    Han JH; Van Deerlin VM; Tollefsen DM
    J Biol Chem; 1997 Mar; 272(13):8243-9. PubMed ID: 9079643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the proposed serpin-enzyme complex receptor recognition site in binding and internalization of thrombin-heparin cofactor II complexes by hepatocytes.
    Maekawa H; Tollefsen DM
    J Biol Chem; 1996 Aug; 271(31):18604-9. PubMed ID: 8702511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of thrombin anion-binding exosite-I in the formation of thrombin-serpin complexes.
    Myles T; Church FC; Whinna HC; Monard D; Stone SR
    J Biol Chem; 1998 Nov; 273(47):31203-8. PubMed ID: 9813026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serpin conformational change in ovalbumin. Enhanced reactive center loop insertion through hinge region mutations.
    Huntington JA; Fan B; Karlsson KE; Deinum J; Lawrence DA; Gettins PG
    Biochemistry; 1997 May; 36(18):5432-40. PubMed ID: 9154925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Leu99 of thrombin in determining the P2 specificity of serpins.
    Rezaie AR
    Biochemistry; 1997 Jun; 36(24):7437-46. PubMed ID: 9200692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of arginine 103 and lysine 185 in the proposed glycosaminoglycan-binding site of heparin cofactor II.
    Blinder MA; Tollefsen DM
    J Biol Chem; 1990 Jan; 265(1):286-91. PubMed ID: 2104620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine 200 of heparin cofactor II promotes intramolecular interactions of the acidic domain. Implication for thrombin inhibition.
    Ciaccia AV; Monroe DM; Church FC
    J Biol Chem; 1997 May; 272(22):14074-9. PubMed ID: 9162031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease.
    Stone SR; Le Bonniec BF
    J Mol Biol; 1997 Jan; 265(3):344-62. PubMed ID: 9018048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin).
    Ulbricht D; Pippel J; Schultz S; Meier R; Sträter N; Heiker JT
    Biochem J; 2015 Sep; 470(3):357-67. PubMed ID: 26199422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity and reactive loop length requirements for crmA inhibition of serine proteases.
    Tesch LD; Raghavendra MP; Bedsted-Faarvang T; Gettins PG; Olson ST
    Protein Sci; 2005 Feb; 14(2):533-42. PubMed ID: 15632287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.