These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15869895)

  • 1. Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: a finite element framework.
    Fernandez JW; Buist ML; Nickerson DP; Hunter PJ
    Med Eng Phys; 2005 Dec; 27(10):862-70. PubMed ID: 15869895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomically based geometric modelling of the musculo-skeletal system and other organs.
    Fernandez JW; Mithraratne P; Thrupp SF; Tawhai MH; Hunter PJ
    Biomech Model Mechanobiol; 2004 Mar; 2(3):139-55. PubMed ID: 14685821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration from proteins to organs: the IUPS Physiome Project.
    Hunter P; Smith N; Fernandez J; Tawhai M
    Mech Ageing Dev; 2005 Jan; 126(1):187-92. PubMed ID: 15610778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The IUPS Physiome Project: a framework for computational physiology.
    Hunter PJ
    Prog Biophys Mol Biol; 2004; 85(2-3):551-69. PubMed ID: 15142761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knee joint mechanics under quadriceps--hamstrings muscle forces are influenced by tibial restraint.
    Mesfar W; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):841-8. PubMed ID: 16774800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromechanical modelling of skeletal muscles based on the finite element method.
    Böl M; Reese S
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):489-504. PubMed ID: 19230146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional finite element modeling of ligaments: technical aspects.
    Weiss JA; Gardiner JC; Ellis BJ; Lujan TJ; Phatak NS
    Med Eng Phys; 2005 Dec; 27(10):845-61. PubMed ID: 16085446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of soft tissue modelling to image-guided surgery.
    Carter TJ; Sermesant M; Cash DM; Barratt DC; Tanner C; Hawkes DJ
    Med Eng Phys; 2005 Dec; 27(10):893-909. PubMed ID: 16271490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties.
    Sigal IA; Flanagan JG; Tertinegg I; Ethier CR
    Biomech Model Mechanobiol; 2009 Apr; 8(2):99-109. PubMed ID: 18301933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating neuromuscular stimulation within the human torso with Taser stimulus.
    Sun H; Webster JG
    Phys Med Biol; 2007 Nov; 52(21):6401-11. PubMed ID: 17951851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling skeletal muscle fibre orientation arrangement.
    Lu YT; Zhu HX; Richmond S; Middleton J
    Comput Methods Biomech Biomed Engin; 2011 Dec; 14(12):1079-88. PubMed ID: 20924862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.
    Hedenstierna S; Halldin P; Brolin K
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active muscle response using feedback control of a finite element human arm model.
    Östh J; Brolin K; Happee R
    Comput Methods Biomech Biomed Engin; 2012; 15(4):347-61. PubMed ID: 21294008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.