These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 15869951)

  • 1. New light on an old paradox: site-dependent effects of carbachol on circadian rhythms.
    Buchanan GF; Gillette MU
    Exp Neurol; 2005 Jun; 193(2):489-96. PubMed ID: 15869951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbachol Induces Phase-dependent Phase Shifts of Per1 Transcription Rhythms in Cultured Suprachiasmatic Nucleus Slices.
    Dojo K; Yamaguchi Y; Fustin JM; Doi M; Kobayashi M; Okamura H
    J Biol Rhythms; 2017 Apr; 32(2):101-108. PubMed ID: 28470123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of carbachol on glutamate-induced activity of the intergeniculate leaflet neurons--in vitro studies.
    Pekala D; Blasiak A; Lewandowski MH
    Brain Res; 2007 Dec; 1186():95-101. PubMed ID: 17997396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro.
    Mou X; Peterson CB; Prosser RA
    Eur J Neurosci; 2009 Oct; 30(8):1451-60. PubMed ID: 19811533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock.
    Liu C; Ding JM; Faiman LE; Gillette MU
    J Neurosci; 1997 Jan; 17(2):659-66. PubMed ID: 8987788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of photic resetting in rats by lesions of projections to the suprachiasmatic nuclei expressing p75 neurotrophin receptor.
    Erhardt C; Galani R; Jeltsch H; Cassel JC; Klosen P; Menet JS; PĂ©vet P; Challet E
    Eur J Neurosci; 2004 Apr; 19(7):1773-88. PubMed ID: 15078551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.
    Aton SJ; Colwell CS; Harmar AJ; Waschek J; Herzog ED
    Nat Neurosci; 2005 Apr; 8(4):476-83. PubMed ID: 15750589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-gated calcium channels play crucial roles in the glutamate-induced phase shifts of the rat suprachiasmatic circadian clock.
    Kim DY; Choi HJ; Kim JS; Kim YS; Jeong DU; Shin HC; Kim MJ; Han HC; Hong SK; Kim YI
    Eur J Neurosci; 2005 Mar; 21(5):1215-22. PubMed ID: 15813931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the M1 receptor in regulating circadian rhythms.
    Gillette MU; Buchanan GF; Artinian L; Hamilton SE; Nathanson NM; Liu C
    Life Sci; 2001 Apr; 68(22-23):2467-72. PubMed ID: 11392614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cannabinoids excite circadian clock neurons.
    Acuna-Goycolea C; Obrietan K; van den Pol AN
    J Neurosci; 2010 Jul; 30(30):10061-6. PubMed ID: 20668190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night.
    Liu C; Gillette MU
    J Neurosci; 1996 Jan; 16(2):744-51. PubMed ID: 8551357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Administration of carbachol into the lateral ventricle and suprachiasmatic nucleus (SCN) produces dose-dependent phase shifts in the circadian rhythm of locomotor activity.
    Wee BE; Anderson KD; Kouchis NS; Turek FW
    Neurosci Lett; 1992 Mar; 137(2):211-5. PubMed ID: 1584462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock.
    Prosser RA; Lee HM; Wehner A
    Neuroscience; 2006 Oct; 142(2):547-55. PubMed ID: 16876330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of M1/4 receptors phase advances the hamster circadian clock during the day.
    Basu P; Wensel AL; McKibbon R; Lefebvre N; Antle MC
    Neurosci Lett; 2016 May; 621():22-27. PubMed ID: 27063283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of intraventricular carbachol injections on the free-running activity rhythm of the hamster.
    Meijer JH; van der Zee E; Dietz M
    J Biol Rhythms; 1988; 3(4):333-48. PubMed ID: 2979643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoentrainment, pharmacology, and phase shifts of the circadian rhythm in the rat pineal.
    Zatz M
    Fed Proc; 1979 Nov; 38(12):2596-601. PubMed ID: 499576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cholinergic system, circadian rhythmicity, and time memory.
    Hut RA; Van der Zee EA
    Behav Brain Res; 2011 Aug; 221(2):466-80. PubMed ID: 21115064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-shifting mechanisms in the mammalian circadian system: new light on the carbachol paradox.
    Colwell CS; Kaufman CM; Menaker M
    J Neurosci; 1993 Apr; 13(4):1454-9. PubMed ID: 7681871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.