These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15870176)

  • 61. The Role of Bone Marrow-Derived Cells during Ectopic Bone Formation of Mouse Femoral Muscle in GFP Mouse Bone Marrow Transplantation Model.
    Takabatake K; Tsujigiwa H; Song Y; Matsuda H; Kawai H; Fujii M; Hamada M; Nakano K; Kawakami T; Nagatsuka H
    Int J Med Sci; 2018; 15(8):748-757. PubMed ID: 30008583
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Conversion of normal rats into SCID-like animals by means of bone marrow transplantation from SCID donors allows engraftment of human peripheral blood mononuclear cells.
    Lubin I; Segall H; Erlich P; David M; Marcus H; Fire G; Burakova T; Kulova L; Reisner Y
    Transplantation; 1995 Oct; 60(7):740-7. PubMed ID: 7570987
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Experimental transplantation study for possible transformation of bone marrow cells in the mouse placenta.
    Kakui K; Itoh H; Sagawa N; Yura S; Takemura M; Kawamura M; Fujii S
    Placenta; 2005; 26(8-9):678-85. PubMed ID: 16085047
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intra-arterial transplantation of adult bone marrow cells restores blood flow and regenerates skeletal muscle in ischemic limbs.
    Liu Q; Chen Z; Terry T; McNatt JM; Willerson JT; Zoldhelyi P
    Vasc Endovascular Surg; 2009; 43(5):433-43. PubMed ID: 19628514
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tissue injury in marrow transdifferentiation.
    Abedi M; Greer DA; Colvin GA; Demers DA; Dooner MS; Harpel JA; Pimentel J; Menon MK; Quesenberry PJ
    Blood Cells Mol Dis; 2004; 32(1):42-6. PubMed ID: 14757411
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bone marrow-derived CD45+ and CD45- cells reside in skeletal muscle.
    Issarachai S; Priestley GV; Nakamoto B; Papayannopoulou T
    Blood Cells Mol Dis; 2002; 29(1):69-72. PubMed ID: 12482405
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Facilitation of allogeneic bone marrow engraftment in mice by total lymphoid irradiation combined with total-body irradiation.
    Ang KK; Waer M; van der Schueren E; Vandeputte M
    Transplantation; 1983 Jul; 36(1):11-5. PubMed ID: 6346607
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Radiation dose-fractionation and dose-rate relationships for long-term repopulating hemopoietic stem cells in a murine bone marrow transplant model.
    van Os R; Thames HD; Konings AW; Down JD
    Radiat Res; 1993 Oct; 136(1):118-25. PubMed ID: 8210327
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An irradiation-free nonmyeloablative bone marrow transplantation model: importance of the balance between donor T-cell number and the intensity of conditioning.
    Kuwatani M; Ikarashi Y; Mineishi S; Asaka M; Wakasugi H
    Transplantation; 2005 Nov; 80(9):1145-52. PubMed ID: 16314778
    [TBL] [Abstract][Full Text] [Related]  

  • 70. CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration.
    Maeda Y; Yonemochi Y; Nakajyo Y; Hidaka H; Ikeda T; Ando Y
    Sci Rep; 2017 Jun; 7(1):3305. PubMed ID: 28607396
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Additional monoclonal antibody (mAB) injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation.
    Tomita Y; Sachs DH; Khan A; Sykes M
    Transplantation; 1996 Feb; 61(3):469-77. PubMed ID: 8610363
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Loss of STAT1 in bone marrow-derived cells accelerates skeletal muscle regeneration.
    Gao Y; Li Y; Guo X; Wu Z; Zhang W
    PLoS One; 2012; 7(5):e37656. PubMed ID: 22649549
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A clinically feasible approach to induce delayed tolerance in recipients of prior kidney or vascularized composite allotransplants.
    Chen B; Xu H; Corbin DR; Ildstad ST
    Transplantation; 2012 Oct; 94(7):671-8. PubMed ID: 22948444
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Participation of transfused bone marrow cells in reparative osteohistogenesis].
    Deev RV; Tsupkina NV; Serikov VB; Gololobov VG; Pinaev GP
    Tsitologiia; 2005; 47(9):755-9. PubMed ID: 16706204
    [TBL] [Abstract][Full Text] [Related]  

  • 75. G-CSF-mobilized peripheral blood mononuclear cells added to marrow facilitates engraftment in nonmyeloablated canine recipients: CD3 cells are required.
    Zaucha JM; Zellmer E; Georges G; Little MT; Storb R; Storer B; Torok-Storb B
    Biol Blood Marrow Transplant; 2001; 7(11):613-9. PubMed ID: 11760149
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Anti-mouse CD154 antibody treatment facilitates generation of mixed xenogeneic rat hematopoietic chimerism, prevents wasting disease and prolongs xenograft survival in mice.
    Masaki H; Appel MC; Leahy L; Leif J; Paquin L; Shultz LD; Mordes JP; Greiner DL; Rossini AA
    Xenotransplantation; 2006 May; 13(3):224-32. PubMed ID: 16756565
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Low Radiation Dose and Low Cell Dose Increase the Risk of Graft Rejection in a Canine Hematopoietic Stem Cell Transplantation Model.
    Lange S; Steder A; Glass Ä; Killian D; Wittmann S; Machka C; Werner J; Schäfer S; Roolf C; Junghanss C
    Biol Blood Marrow Transplant; 2016 Apr; 22(4):637-643. PubMed ID: 26802322
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion.
    Nygren JM; Liuba K; Breitbach M; Stott S; Thorén L; Roell W; Geisen C; Sasse P; Kirik D; Björklund A; Nerlov C; Fleischmann BK; Jovinge S; Jacobsen SE
    Nat Cell Biol; 2008 May; 10(5):584-92. PubMed ID: 18425115
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Accelerated functional recovery after skeletal muscle ischemia-reperfusion injury using freshly isolated bone marrow cells.
    Corona BT; Rathbone CR
    J Surg Res; 2014 May; 188(1):100-9. PubMed ID: 24485153
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Threshold of lung injury required for the appearance of marrow-derived lung epithelia.
    Herzog EL; Van Arnam J; Hu B; Krause DS
    Stem Cells; 2006 Aug; 24(8):1986-92. PubMed ID: 16868209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.