BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 15870268)

  • 1. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks.
    Shim EY; Ma JL; Oum JH; Yanez Y; Lee SE
    Mol Cell Biol; 2005 May; 25(10):3934-44. PubMed ID: 15870268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast.
    Wiest NE; Houghtaling S; Sanchez JC; Tomkinson AE; Osley MA
    Nucleic Acids Res; 2017 Jun; 45(10):5887-5900. PubMed ID: 28398510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin.
    Shim EY; Hong SJ; Oum JH; Yanez Y; Zhang Y; Lee SE
    Mol Cell Biol; 2007 Mar; 27(5):1602-13. PubMed ID: 17178837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair.
    Chai B; Huang J; Cairns BR; Laurent BC
    Genes Dev; 2005 Jul; 19(14):1656-61. PubMed ID: 16024655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.
    Lewis LK; Westmoreland JW; Resnick MA
    Genetics; 1999 Aug; 152(4):1513-29. PubMed ID: 10430580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks.
    Sorenson KS; Mahaney BL; Lees-Miller SP; Cobb JA
    J Biol Chem; 2017 Sep; 292(35):14576-14586. PubMed ID: 28679532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of Mre11p with double-strand break sites during yeast meiosis.
    Borde V; Lin W; Novikov E; Petrini JH; Lichten M; Nicolas A
    Mol Cell; 2004 Feb; 13(3):389-401. PubMed ID: 14967146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining.
    Palmbos PL; Daley JM; Wilson TE
    Mol Cell Biol; 2005 Dec; 25(24):10782-90. PubMed ID: 16314503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement.
    Patel AB; Moore CM; Greber BJ; Luo J; Zukin SA; Ranish J; Nogales E
    Elife; 2019 Dec; 8():. PubMed ID: 31886770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences.
    Ma JL; Kim EM; Haber JE; Lee SE
    Mol Cell Biol; 2003 Dec; 23(23):8820-8. PubMed ID: 14612421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14.
    Kasten M; Szerlong H; Erdjument-Bromage H; Tempst P; Werner M; Cairns BR
    EMBO J; 2004 Mar; 23(6):1348-59. PubMed ID: 15014446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae.
    Zhang X; Paull TT
    DNA Repair (Amst); 2005 Nov; 4(11):1281-94. PubMed ID: 16043424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks.
    Llorente B; Symington LS
    Mol Cell Biol; 2004 Nov; 24(21):9682-94. PubMed ID: 15485933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae.
    Lewis LK; Resnick MA
    Mutat Res; 2000 Jun; 451(1-2):71-89. PubMed ID: 10915866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break.
    Shroff R; Arbel-Eden A; Pilch D; Ira G; Bonner WM; Petrini JH; Haber JE; Lichten M
    Curr Biol; 2004 Oct; 14(19):1703-11. PubMed ID: 15458641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins.
    Lisby M; Barlow JH; Burgess RC; Rothstein R
    Cell; 2004 Sep; 118(6):699-713. PubMed ID: 15369670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-homologous end-joining factors of Saccharomyces cerevisiae.
    Dudásová Z; Dudás A; Chovanec M
    FEMS Microbiol Rev; 2004 Nov; 28(5):581-601. PubMed ID: 15539075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast.
    Prudden J; Evans JS; Hussey SP; Deans B; O'Neill P; Thacker J; Humphrey T
    EMBO J; 2003 Mar; 22(6):1419-30. PubMed ID: 12628934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae.
    Wu D; Topper LM; Wilson TE
    Genetics; 2008 Mar; 178(3):1237-49. PubMed ID: 18245831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.