BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15870326)

  • 1. Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques.
    Silberbach M; Schäfer M; Hüser AT; Kalinowski J; Pühler A; Krämer R; Burkovski A
    Appl Environ Microbiol; 2005 May; 71(5):2391-402. PubMed ID: 15870326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum.
    Silberbach M; Hüser A; Kalinowski J; Pühler A; Walter B; Krämer R; Burkovski A
    J Biotechnol; 2005 Oct; 119(4):357-67. PubMed ID: 15935503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of global analysis techniques to Corynebacterium glutamicum: new insights into nitrogen regulation.
    Silberbach M; Burkovski A
    J Biotechnol; 2006 Oct; 126(1):101-10. PubMed ID: 16698104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen control in Corynebacterium glutamicum: proteins, mechanisms, signals.
    Burkovski A
    J Microbiol Biotechnol; 2007 Feb; 17(2):187-94. PubMed ID: 18051748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global proteome survey of protocatechuate- and glucose-grown Corynebacterium glutamicum reveals multiple physiological differences.
    Haussmann U; Poetsch A
    J Proteomics; 2012 May; 75(9):2649-59. PubMed ID: 22450470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes.
    Burkovski A
    FEMS Microbiol Rev; 2003 Dec; 27(5):617-28. PubMed ID: 14638415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing.
    Rehm N; Georgi T; Hiery E; Degner U; Schmiedl A; Burkovski A; Bott M
    Microbiology (Reading); 2010 Oct; 156(Pt 10):3180-3193. PubMed ID: 20656783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of nitrogen metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor.
    Harper C; Hayward D; Wiid I; van Helden P
    IUBMB Life; 2008 Oct; 60(10):643-50. PubMed ID: 18493948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I do it my way: Regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum.
    Burkovski A
    Arch Microbiol; 2003; 179(2):83-8. PubMed ID: 12560985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD.
    Nolden L; Ngouoto-Nkili CE; Bendt AK; Krämer R; Burkovski A
    Mol Microbiol; 2001 Dec; 42(5):1281-95. PubMed ID: 11886559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology and global gene expression of a Corynebacterium glutamicum ΔF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation.
    Koch-Koerfges A; Kabus A; Ochrombel I; Marin K; Bott M
    Biochim Biophys Acta; 2012 Feb; 1817(2):370-80. PubMed ID: 22050934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production.
    Rehm N; Burkovski A
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):239-48. PubMed ID: 20922371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon.
    Beckers G; Strösser J; Hildebrandt U; Kalinowski J; Farwick M; Krämer R; Burkovski A
    Mol Microbiol; 2005 Oct; 58(2):580-95. PubMed ID: 16194241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification of the urea uptake system and transcriptional analysis of urea transporter- and urease-encoding genes in Corynebacterium glutamicum.
    Beckers G; Bendt AK; Krämer R; Burkovski A
    J Bacteriol; 2004 Nov; 186(22):7645-52. PubMed ID: 15516578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
    Haussmann U; Qi SW; Wolters D; Rögner M; Liu SJ; Poetsch A
    Proteomics; 2009 Jul; 9(14):3635-51. PubMed ID: 19639586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
    Polen T; Schluesener D; Poetsch A; Bott M; Wendisch VF
    FEMS Microbiol Lett; 2007 Aug; 273(1):109-19. PubMed ID: 17559405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme.
    Walter B; Hänssler E; Kalinowski J; Burkovski A
    J Mol Microbiol Biotechnol; 2007; 12(1-2):131-8. PubMed ID: 17183220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of ammonium uptake systems in Corynebacterium glutamicum: mechanism of action and energetics of AmtA and AmtB.
    Walter B; Küspert M; Ansorge D; Krämer R; Burkovski A
    J Bacteriol; 2008 Apr; 190(7):2611-4. PubMed ID: 18245289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
    Lubitz D; Wendisch VF
    BMC Microbiol; 2016 Oct; 16(1):235. PubMed ID: 27717325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
    Vasco-Cárdenas MF; Baños S; Ramos A; Martín JF; Barreiro C
    J Proteomics; 2013 Jun; 85():65-88. PubMed ID: 23624027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.