These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15870639)

  • 21. VO2 response at the onset of heavy exercise is accelerated not by diathermic warming of the thigh muscles but by prior heavy exercise.
    Fukuba Y; Shinhara Y; Houman T; Endo MY; Yamada M; Miura A; Hayashi N; Sato H; Koga S; Yoshida T
    Res Sports Med; 2012 Jan; 20(1):13-24. PubMed ID: 22242734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prior heavy exercise increases oxygen cost during moderate exercise without associated change in surface EMG.
    Gonzales JU; Scheuermann BW
    J Electromyogr Kinesiol; 2008 Feb; 18(1):99-107. PubMed ID: 17064938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in cycling efficiency and performance after endurance exercise.
    Passfield L; Doust JH
    Med Sci Sports Exerc; 2000 Nov; 32(11):1935-41. PubMed ID: 11079525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of active, passive or no warm-up on metabolism and performance during high-intensity exercise.
    Gray S; Nimmo M
    J Sports Sci; 2001 Sep; 19(9):693-700. PubMed ID: 11522145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ischemic preconditioning on economy, VO
    Kilding AE; Sequeira GM; Wood MR
    Eur J Appl Physiol; 2018 Dec; 118(12):2541-2549. PubMed ID: 30361766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of priming exercise on VO2 kinetics and the power-duration relationship.
    Burnley M; Davison G; Baker JR
    Med Sci Sports Exerc; 2011 Nov; 43(11):2171-9. PubMed ID: 21552161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of prior heavy exercise on VO(2) kinetics during heavy exercise are related to changes in muscle activity.
    Burnley M; Doust JH; Ball D; Jones AM
    J Appl Physiol (1985); 2002 Jul; 93(1):167-74. PubMed ID: 12070201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological variables at lactate threshold under-represent cycling time-trial intensity.
    Kenefick RW; Mattern CO; Mahood NV; Quinn TJ
    J Sports Med Phys Fitness; 2002 Dec; 42(4):396-402. PubMed ID: 12391432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of prior heavy exercise, prior sprint exercise and passive warming on oxygen uptake kinetics during heavy exercise in humans.
    Burnley M; Doust JH; Jones AM
    Eur J Appl Physiol; 2002 Aug; 87(4-5):424-32. PubMed ID: 12172883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effects of a Cycling Warm-up Including High-Intensity Heavy-Resistance Conditioning Contractions on Subsequent 4-km Time Trial Performance.
    Chorley A; Lamb KL
    J Strength Cond Res; 2019 Jan; 33(1):57-65. PubMed ID: 28368959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men.
    Ziemann E; Grzywacz T; Łuszczyk M; Laskowski R; Olek RA; Gibson AL
    J Strength Cond Res; 2011 Apr; 25(4):1104-12. PubMed ID: 20661160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Priming and Pacing Strategy on Oxygen-Uptake Kinetics and Cycling Performance.
    Bailey SJ; Vanhatalo A; Black MI; DiMenna FJ; Jones AM
    Int J Sports Physiol Perform; 2016 May; 11(4):440-7. PubMed ID: 26355418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of acute nitrate ingestion on V̇O
    Ghiarone T; Ataide-Silva T; Bertuzzi R; McConell GK; Lima-Silva AE
    Appl Physiol Nutr Metab; 2017 Nov; 42(11):1127-1134. PubMed ID: 28658582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.
    Scheuermann BW; Hoelting BD; Noble ML; Barstow TJ
    J Physiol; 2001 Feb; 531(Pt 1):245-56. PubMed ID: 11179407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deciphering the metabolic and mechanical contributions to the exercise-induced circulatory response: insights from eccentric cycling.
    Dufour SP; Doutreleau S; Lonsdorfer-Wolf E; Lampert E; Hirth C; Piquard F; Lonsdorfer J; Geny B; Mettauer B; Richard R
    Am J Physiol Regul Integr Comp Physiol; 2007 Apr; 292(4):R1641-8. PubMed ID: 17158264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic and performance effects of warm-up intensity on sprint cycling.
    Wittekind A; Beneke R
    Scand J Med Sci Sports; 2011 Dec; 21(6):e201-7. PubMed ID: 21129035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-intensity cycling re-warm up within a very short time-frame increases the subsequent intermittent sprint performance.
    Yanaoka T; Hamada Y; Fujihira K; Yamamoto R; Iwata R; Miyashita M; Hirose N
    Eur J Sport Sci; 2020 Nov; 20(10):1307-1317. PubMed ID: 31914360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prior heavy-intensity exercise speeds VO2 kinetics during moderate-intensity exercise in young adults.
    Gurd BJ; Scheuermann BW; Paterson DH; Kowalchuk JM
    J Appl Physiol (1985); 2005 Apr; 98(4):1371-8. PubMed ID: 15579570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen uptake kinetics during two bouts of heavy cycling separated by fatiguing sprint exercise in humans.
    Tordi N; Perrey S; Harvey A; Hughson RL
    J Appl Physiol (1985); 2003 Feb; 94(2):533-41. PubMed ID: 12391053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.
    Zoladz JA; Duda K; Majerczak J
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):445-51. PubMed ID: 9562296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.