These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 15870893)
21. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001 [TBL] [Abstract][Full Text] [Related]
22. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology. Nascimento E; Silva T; Oliva A Parassitologia; 2007 May; 49 Suppl 1():45-52. PubMed ID: 17691607 [TBL] [Abstract][Full Text] [Related]
23. A new design for efficient dielectrophoretic separation of cells in a microdevice. Jubery TZ; Dutta P Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020 [TBL] [Abstract][Full Text] [Related]
25. A portable and integrated instrument for cell manipulation by dielectrophoresis. Burgarella S; Di Bari M Electrophoresis; 2015 Jul; 36(13):1466-70. PubMed ID: 25808778 [TBL] [Abstract][Full Text] [Related]
26. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667 [TBL] [Abstract][Full Text] [Related]
27. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230 [TBL] [Abstract][Full Text] [Related]
28. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
29. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111 [TBL] [Abstract][Full Text] [Related]
31. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Hunt TP; Issadore D; Westervelt RM Lab Chip; 2008 Jan; 8(1):81-7. PubMed ID: 18094765 [TBL] [Abstract][Full Text] [Related]
32. PCR-based detection in a micro-fabricated platform. Bhattacharya S; Salamat S; Morisette D; Banada P; Akin D; Liu YS; Bhunia AK; Ladisch M; Bashir R Lab Chip; 2008 Jul; 8(7):1130-6. PubMed ID: 18584089 [TBL] [Abstract][Full Text] [Related]
33. A microfluidic device for continuous white blood cell separation and lysis from whole blood. Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042 [TBL] [Abstract][Full Text] [Related]
34. Continuous blood cell separation by hydrophoretic filtration. Choi S; Song S; Choi C; Park JK Lab Chip; 2007 Nov; 7(11):1532-8. PubMed ID: 17960282 [TBL] [Abstract][Full Text] [Related]
35. On-chip high-speed sorting of micron-sized particles for high-throughput analysis. Holmes D; Sandison ME; Green NG; Morgan H IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169 [TBL] [Abstract][Full Text] [Related]
36. Parallel measurements of drug actions on Erythrocytes by dielectrophoresis, using a three-dimensional electrode design. Hübner Y; Hoettges KF; Kass GE; Ogin SL; Hughes MP IEE Proc Nanobiotechnol; 2005 Aug; 152(4):150-4. PubMed ID: 16441172 [TBL] [Abstract][Full Text] [Related]
37. Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Cetin B; Kang Y; Wu Z; Li D Electrophoresis; 2009 Mar; 30(5):766-72. PubMed ID: 19197898 [TBL] [Abstract][Full Text] [Related]
38. Isolation of Langerhans islets by dielectrophoresis. Burgarella S; Merlo S; Figliuzzi M; Remuzzi A Electrophoresis; 2013 Apr; 34(7):1068-75. PubMed ID: 23161152 [TBL] [Abstract][Full Text] [Related]
39. Numerical and experimental evaluation of microfluidic sorting devices. Taylor JK; Ren CL; Stubley GD Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907 [TBL] [Abstract][Full Text] [Related]
40. Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples. Sano MB; Caldwell JL; Davalos RV Biosens Bioelectron; 2011 Dec; 30(1):13-20. PubMed ID: 21944186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]