These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15871040)

  • 1. Why are young and old repetitive elements distributed differently in the human genome?
    Belle EM; Webster MT; Eyre-Walker A
    J Mol Evol; 2005 Mar; 60(3):290-6. PubMed ID: 15871040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of human-specific AluS elements through comparative genomics.
    Lee J; Kim YJ; Mun S; Kim HS; Han K
    Gene; 2015 Jan; 555(2):208-16. PubMed ID: 25447892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biased distribution of inverted and direct Alus in the human genome: implications for insertion, exclusion, and genome stability.
    Stenger JE; Lobachev KS; Gordenin D; Darden TA; Jurka J; Resnick MA
    Genome Res; 2001 Jan; 11(1):12-27. PubMed ID: 11156612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar integration but different stability of Alus and LINEs in the human genome.
    Pavlícek A; Jabbari K; Paces J; Paces V; Hejnar JV; Bernardi G
    Gene; 2001 Oct; 276(1-2):39-45. PubMed ID: 11591470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retroelement distributions in the human genome: variations associated with age and proximity to genes.
    Medstrand P; van de Lagemaat LN; Mager DL
    Genome Res; 2002 Oct; 12(10):1483-95. PubMed ID: 12368240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biased distribution of Alus in human isochores might be driven by recombination.
    Hackenberg M; Bernaola-Galván P; Carpena P; Oliver JL
    J Mol Evol; 2005 Mar; 60(3):365-77. PubMed ID: 15871047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the features and source gene composition of the AluYg6 subfamily of human retrotransposons.
    Styles P; Brookfield JF
    BMC Evol Biol; 2007 Jul; 7():102. PubMed ID: 17603915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recently integrated Alu elements and human genomic diversity.
    Salem AH; Kilroy GE; Watkins WS; Jorde LB; Batzer MA
    Mol Biol Evol; 2003 Aug; 20(8):1349-61. PubMed ID: 12777511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recently integrated Alu retrotransposons are essentially neutral residents of the human genome.
    Cordaux R; Lee J; Dinoso L; Batzer MA
    Gene; 2006 May; 373():138-44. PubMed ID: 16527433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence.
    Gu Z; Wang H; Nekrutenko A; Li WH
    Gene; 2000 Dec; 259(1-2):81-8. PubMed ID: 11163965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential alu mobilization and polymorphism among the human and chimpanzee lineages.
    Hedges DJ; Callinan PA; Cordaux R; Xing J; Barnes E; Batzer MA
    Genome Res; 2004 Jun; 14(6):1068-75. PubMed ID: 15173113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-genome analysis of Alu repeat elements reveals complex evolutionary history.
    Price AL; Eskin E; Pevzner PA
    Genome Res; 2004 Nov; 14(11):2245-52. PubMed ID: 15520288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tandem insertions of Alu elements.
    El-Sawy M; Deininger P
    Cytogenet Genome Res; 2005; 108(1-3):58-62. PubMed ID: 15545716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial sequence of the chimpanzee genome and comparison with the human genome.
    Chimpanzee Sequencing and Analysis Consortium
    Nature; 2005 Sep; 437(7055):69-87. PubMed ID: 16136131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of L1 and Alu retroelements in relation to GC content on human sex chromosomes is consistent with the ectopic recombination model.
    Abrusán G; Krambeck HJ
    J Mol Evol; 2006 Oct; 63(4):484-92. PubMed ID: 16955238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alu elements and the human genome.
    Rowold DJ; Herrera RJ
    Genetica; 2000; 108(1):57-72. PubMed ID: 11145422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-traditional Alu evolution and primate genomic diversity.
    Roy-Engel AM; Carroll ML; El-Sawy M; Salem AH; Garber RK; Nguyen SV; Deininger PL; Batzer MA
    J Mol Biol; 2002 Mar; 316(5):1033-40. PubMed ID: 11884141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity.
    Carroll ML; Roy-Engel AM; Nguyen SV; Salem AH; Vogel E; Vincent B; Myers J; Ahmad Z; Nguyen L; Sammarco M; Watkins WS; Henke J; Makalowski W; Jorde LB; Deininger PL; Batzer MA
    J Mol Biol; 2001 Aug; 311(1):17-40. PubMed ID: 11469855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distributions of "new" and "old" Alu sequences in the human genome: the solution of a "mystery".
    Costantini M; Auletta F; Bernardi G
    Mol Biol Evol; 2012 Jan; 29(1):421-7. PubMed ID: 22057813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Alu elements toward enhancers.
    Su M; Han D; Boyd-Kirkup J; Yu X; Han JJ
    Cell Rep; 2014 Apr; 7(2):376-385. PubMed ID: 24703844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.