These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15871221)

  • 21. Including degradation products of persistent organic pollutants in a global multi-media box model.
    Schenker U; Scheringer M; Hungerbühler K
    Environ Sci Pollut Res Int; 2007 May; 14(3):145-52. PubMed ID: 17561772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental persistence of organic pollutants: guidance for development and review of POP risk profiles.
    Boethling R; Fenner K; Howard P; Klecka G; Madsen T; Snape JR; Whelan MJ
    Integr Environ Assess Manag; 2009 Oct; 5(4):539-56. PubMed ID: 19552498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dow and Kaw,eff vs. Kow and Kaw degrees: acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential.
    Rayne S; Forest K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1550-94. PubMed ID: 20721799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of chemical screening outcomes based on different partitioning property estimation methods.
    Zhang X; Brown TN; Wania F; Heimstad ES; Goss KU
    Environ Int; 2010 Aug; 36(6):514-20. PubMed ID: 20451252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanding the applicability of multimedia fate models to polar organic chemicals.
    Breivik K; Wania F
    Environ Sci Technol; 2003 Nov; 37(21):4934-43. PubMed ID: 14620821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water.
    Reppas-Chrysovitsinos E; Sobek A; MacLeod M
    Environ Sci Process Impacts; 2016 Jun; 18(6):667-76. PubMed ID: 27158699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measures of overall persistence and the temporal remote state.
    Stroebe M; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2004 Nov; 38(21):5665-73. PubMed ID: 15575286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.
    Liu S; Lu Y; Xie S; Wang T; Jones KC; Sweetman AJ
    Environ Int; 2015 Dec; 85():15-26. PubMed ID: 26298835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.
    Chi Y; Zhang H; Huang Q; Lin Y; Ye G; Zhu H; Dong S
    J Environ Sci (China); 2018 Feb; 64():23-31. PubMed ID: 29478644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioaccumulation of organic contaminants in humans: a multimedia perspective and the importance of biotransformation.
    McLachlan MS; Czub G; MacLeod M; Arnot JA
    Environ Sci Technol; 2011 Jan; 45(1):197-202. PubMed ID: 20701275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of monitoring data selection for optimization of a steady state multimedia model on the magnitude and nature of the model prediction bias.
    Kim HS; Lee DS
    Chemosphere; 2017 Nov; 186():716-724. PubMed ID: 28820995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling exposure to persistent chemicals in hazard and risk assessment.
    Cowan-Ellsberry CE; McLachlan MS; Arnot JA; Macleod M; McKone TE; Wania F
    Integr Environ Assess Manag; 2009 Oct; 5(4):662-79. PubMed ID: 19552503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporation of potential for multimedia exposure into chemical hazard scores for pollution prevention.
    Whaley DA; Meloy TP; Barrett SS; Bedillion EJ
    Drug Chem Toxicol; 1999 Feb; 22(1):241-73. PubMed ID: 10189582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats.
    Reppas-Chrysovitsinos E; Sobek A; MacLeod M
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):134-146. PubMed ID: 29285590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.
    Geisler A; Endo S; Goss KU
    Environ Int; 2011 Oct; 37(7):1253-8. PubMed ID: 21684007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring chemicals in people-what would you say? A Boston consensus statement on biomonitoring.
    ;
    New Solut; 2008; 18(2):263-70. PubMed ID: 18511402
    [No Abstract]   [Full Text] [Related]  

  • 37. Indicators for persistence and long-range transport potential as derived from multicompartment chemistry-transport modelling.
    Leip A; Lammel G
    Environ Pollut; 2004; 128(1-2):205-21. PubMed ID: 14667729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosensor of environmental persistence for chemical risk assessment.
    Campanella L; Costanza C
    Ecotoxicol Environ Saf; 2009 Jan; 72(1):261-272. PubMed ID: 18786725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting long-range transport: a systematic evaluation of two multimedia transport models.
    Bennett DH; Scheringer M; McKone TE; Hungerbühler K
    Environ Sci Technol; 2001 Mar; 35(6):1181-9. PubMed ID: 11347931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the reversibility of environmental contamination with persistent organic pollutants.
    Choi SD; Wania F
    Environ Sci Technol; 2011 Oct; 45(20):8834-41. PubMed ID: 21905649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.