These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 15871254)
1. Practical considerations on the use of predictive models for regulatory purposes. Tunkel J; Mayo K; Austin C; Hickerson A; Howard P Environ Sci Technol; 2005 Apr; 39(7):2188-99. PubMed ID: 15871254 [TBL] [Abstract][Full Text] [Related]
2. Mode of action and the assessment of chemical hazards in the presence of limited data: use of structure-activity relationships (SAR) under TSCA, Section 5. Auer CM; Nabholz JV; Baetcke KP Environ Health Perspect; 1990 Jul; 87():183-97. PubMed ID: 2269224 [TBL] [Abstract][Full Text] [Related]
3. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling. Yost EE; Stanek J; DeWoskin RS; Burgoon LD Environ Sci Technol; 2016 Jul; 50(14):7732-42. PubMed ID: 27172125 [TBL] [Abstract][Full Text] [Related]
4. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach. Burden N; Maynard SK; Weltje L; Wheeler JR Regul Toxicol Pharmacol; 2016 Oct; 80():241-6. PubMed ID: 27235557 [TBL] [Abstract][Full Text] [Related]
5. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. Gissi A; Gadaleta D; Floris M; Olla S; Carotti A; Novellino E; Benfenati E; Nicolotti O ALTEX; 2014; 31(1):23-36. PubMed ID: 24247988 [TBL] [Abstract][Full Text] [Related]
6. QSARs in ecotoxicological risk assessment. de Roode D; Hoekzema C; de Vries-Buitenweg S; van de Waart B; van der Hoeven J Regul Toxicol Pharmacol; 2006 Jun; 45(1):24-35. PubMed ID: 16529851 [TBL] [Abstract][Full Text] [Related]
7. Approaches for describing and communicating overall uncertainty in toxicity characterizations: U.S. Environmental Protection Agency's Integrated Risk Information System (IRIS) as a case study. Beck NB; Becker RA; Erraguntla N; Farland WH; Grant RL; Gray G; Kirman C; LaKind JS; Jeffrey Lewis R; Nance P; Pottenger LH; Santos SL; Shirley S; Simon T; Dourson ML Environ Int; 2016; 89-90():110-28. PubMed ID: 26827183 [TBL] [Abstract][Full Text] [Related]
8. U.S. EPA regulatory perspectives on the use of QSAR for new and existing chemical evaluations. Zeeman M; Auer CM; Clements RG; Nabholz JV; Boethling RS SAR QSAR Environ Res; 1995; 3(3):179-201. PubMed ID: 8564854 [TBL] [Abstract][Full Text] [Related]
9. Comparison of in silico models for prediction of Daphnia magna acute toxicity. Golbamaki A; Cassano A; Lombardo A; Moggio Y; Colafranceschi M; Benfenati E SAR QSAR Environ Res; 2014; 25(8):673-94. PubMed ID: 24911142 [TBL] [Abstract][Full Text] [Related]
10. Prediction of acute toxicity in fish by using QSAR methods and chemical modes of action. Lozano S; Lescot E; Halm MP; Lepailleur A; Bureau R; Rault S J Enzyme Inhib Med Chem; 2010 Apr; 25(2):195-203. PubMed ID: 19874208 [TBL] [Abstract][Full Text] [Related]
11. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. Kavlock R; Dix D J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897 [TBL] [Abstract][Full Text] [Related]
12. In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Mansouri K; Judson RS Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474 [TBL] [Abstract][Full Text] [Related]
13. Comparison of in silico, in vitro, and in vivo toxicity benchmarks suggests a role for ToxCast data in ecological hazard assessment. Schaupp CM; Maloney EM; Mattingly KZ; Olker JH; Villeneuve DL Toxicol Sci; 2023 Sep; 195(2):145-154. PubMed ID: 37490521 [TBL] [Abstract][Full Text] [Related]
14. Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Cronin MT; Jaworska JS; Walker JD; Comber MH; Watts CD; Worth AP Environ Health Perspect; 2003 Aug; 111(10):1391-401. PubMed ID: 12896862 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of EPA's Tier 1 Endocrine Screening Battery and recommendations for improving the interpretation of screening results. Borgert CJ; Mihaich EM; Quill TF; Marty MS; Levine SL; Becker RA Regul Toxicol Pharmacol; 2011 Apr; 59(3):397-411. PubMed ID: 21251942 [TBL] [Abstract][Full Text] [Related]
16. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish. Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of QSAR models for predicting the partition coefficient (log P) of chemicals under the REACH regulation. Cappelli CI; Benfenati E; Cester J Environ Res; 2015 Nov; 143(Pt A):26-32. PubMed ID: 26432472 [TBL] [Abstract][Full Text] [Related]
18. Rethink how chemical hazards are tested. Warner JC; Ludwig JK Nature; 2016 Aug; 536(7616):269-70. PubMed ID: 27535519 [No Abstract] [Full Text] [Related]
19. Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models. Petoumenou MI; Pizzo F; Cester J; Fernández A; Benfenati E Environ Res; 2015 Oct; 142():529-34. PubMed ID: 26282223 [TBL] [Abstract][Full Text] [Related]
20. Comparison of in silico models for prediction of mutagenicity. Bakhtyari NG; Raitano G; Benfenati E; Martin T; Young D J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(1):45-66. PubMed ID: 23534394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]