BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 15872045)

  • 1. Antisense phosphorodiamidate morpholino oligomer inhibits viability of Escherichia coli in pure culture and in mouse peritonitis.
    Geller BL; Deere J; Tilley L; Iversen PL
    J Antimicrob Chemother; 2005 Jun; 55(6):983-8. PubMed ID: 15872045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of gene expression in Escherichia coli by antisense phosphorodiamidate morpholino oligomers.
    Geller BL; Deere JD; Stein DA; Kroeker AD; Moulton HM; Iversen PL
    Antimicrob Agents Chemother; 2003 Oct; 47(10):3233-9. PubMed ID: 14506035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers.
    Puckett SE; Reese KA; Mitev GM; Mullen V; Johnson RC; Pomraning KR; Mellbye BL; Tilley LD; Iversen PL; Freitag M; Geller BL
    Antimicrob Agents Chemother; 2012 Dec; 56(12):6147-53. PubMed ID: 22985881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of multiple subtypes of influenza A virus in cell cultures with morpholino oligomers.
    Ge Q; Pastey M; Kobasa D; Puthavathana P; Lupfer C; Bestwick RK; Iversen PL; Chen J; Stein DA
    Antimicrob Agents Chemother; 2006 Nov; 50(11):3724-33. PubMed ID: 16966399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Antisense Oligonucleotide Efficiency in Inhibiting Prokaryotic Gene Expression.
    Story S; Bhaduri S; Ganguly S; Dakarapu R; Wicks SL; Bhadra J; Kwange S; Arya DP
    ACS Infect Dis; 2024 Mar; 10(3):971-987. PubMed ID: 38385613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning To Predict Cell-Penetrating Peptides for Antisense Delivery.
    Wolfe JM; Fadzen CM; Choo ZN; Holden RL; Yao M; Hanson GJ; Pentelute BL
    ACS Cent Sci; 2018 Apr; 4(4):512-520. PubMed ID: 29721534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Amphipathic trans-Acting Phosphorothioate DNA Element Delivers Uncharged PNA and PMO Nucleic Acid Sequences in Mammalian Cells.
    Jain HV; Beaucage SL
    Curr Protoc Nucleic Acid Chem; 2016 Mar; 64(1):4.69.1-4.69.22. PubMed ID: 27516815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene-specific effects of antisense phosphorodiamidate morpholino oligomer-peptide conjugates on Escherichia coli and Salmonella enterica serovar typhimurium in pure culture and in tissue culture.
    Tilley LD; Hine OS; Kellogg JA; Hassinger JN; Weller DD; Iversen PL; Geller BL
    Antimicrob Agents Chemother; 2006 Aug; 50(8):2789-96. PubMed ID: 16870773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative analysis of peptide-delivered antisense antibiotics using diverse nucleotide mimics.
    Ghosh C; Popella L; Dhamodharan V; Jung J; Dietzsch J; Barquist L; Höbartner C; Vogel J
    RNA; 2024 May; 30(6):624-643. PubMed ID: 38413166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence specificity defines the effectiveness of PPMOs targeting
    Nanayakkara AK; Moustafa DA; Pifer R; Goldberg JB; Greenberg DE
    Antimicrob Agents Chemother; 2023 Sep; 67(9):e0024523. PubMed ID: 37610213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas aeruginosa Antivirulence Strategies: Targeting the Type III Secretion System.
    Goldberg JB; Crisan CV; Luu JM
    Adv Exp Med Biol; 2022; 1386():257-280. PubMed ID: 36258075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA: packaged and protected by VLPs.
    Fang PY; Bowman JC; Gómez Ramos LM; Hsiao C; Williams LD
    RSC Adv; 2018 Jun; 8(38):21399-21406. PubMed ID: 35539947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold size-dependent effect on the enhanced uptake of antibiotics and other compounds by Escherichia coli and Pseudomonas aeruginosa.
    Yamamoto K; Yamamoto N; Ayukawa S; Yasutake Y; Ishiya K; Nakashima N
    Sci Rep; 2022 Apr; 12(1):5609. PubMed ID: 35379875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Nosocomial Infections: Multidrug Resistance as a Trigger for the Development of Novel Antimicrobials.
    Sousa SA; Feliciano JR; Pita T; Soeiro CF; Mendes BL; Alves LG; Leitão JH
    Antibiotics (Basel); 2021 Aug; 10(8):. PubMed ID: 34438992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Retain Activity against Multidrug-Resistant Pseudomonas aeruginosa
    Moustafa DA; Wu AW; Zamora D; Daly SM; Sturge CR; Pybus C; Geller BL; Goldberg JB; Greenberg DE
    mBio; 2021 Jan; 12(1):. PubMed ID: 33436433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiolipin-Based Lipopolyplex Platform for the Delivery of Diverse Nucleic Acids into Gram-Negative Bacteria.
    Perche F; Le Gall T; Montier T; Pichon C; Malinge JM
    Pharmaceuticals (Basel); 2019 May; 12(2):. PubMed ID: 31141930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-Sense Antibiotic Agents as Treatment for Bacterial Infections.
    Stewart DB
    Surg Infect (Larchmt); 2018; 19(8):831-835. PubMed ID: 30256744
    [No Abstract]   [Full Text] [Related]  

  • 18. Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics.
    Tram NDT; Ee PLR
    Antibiotics (Basel); 2017 Jul; 6(3):. PubMed ID: 28677631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fighting against evolution of antibiotic resistance by utilizing evolvable antimicrobial drugs.
    Cansizoglu MF; Toprak E
    Curr Genet; 2017 Dec; 63(6):973-976. PubMed ID: 28497241
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.