These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15872069)

  • 1. Spike timing in CA3 pyramidal cells during behavior: implications for synaptic transmission.
    Frerking M; Schulte J; Wiebe SP; Stäubli U
    J Neurophysiol; 2005 Aug; 94(2):1528-40. PubMed ID: 15872069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.
    Barbieri R; Quirk MC; Frank LM; Wilson MA; Brown EN
    J Neurosci Methods; 2001 Jan; 105(1):25-37. PubMed ID: 11166363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons.
    Tropp Sneider J; Chrobak JJ; Quirk MC; Oler JA; Markus EJ
    Neuroscience; 2006 Sep; 141(4):1665-77. PubMed ID: 16843607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action potential timing precision in dorsal cochlear nucleus pyramidal cells.
    Street SE; Manis PB
    J Neurophysiol; 2007 Jun; 97(6):4162-72. PubMed ID: 17442767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike timing and reliability in cortical pyramidal neurons: effects of EPSC kinetics, input synchronization and background noise on spike timing.
    Rodriguez-Molina VM; Aertsen A; Heck DH
    PLoS One; 2007 Mar; 2(3):e319. PubMed ID: 17389910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge.
    Marshall L; Henze DA; Hirase H; Leinekugel X; Dragoi G; Buzsáki G
    J Neurosci; 2002 Jan; 22(2):RC197. PubMed ID: 11784809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells.
    Harris KD; Hirase H; Leinekugel X; Henze DA; Buzsáki G
    Neuron; 2001 Oct; 32(1):141-9. PubMed ID: 11604145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of neural noise on spike time precision in a detailed CA3 neuron model.
    Kuriscak E; Marsalek P; Stroffek J; Wünsch Z
    Comput Math Methods Med; 2012; 2012():595398. PubMed ID: 22778784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves.
    Lengyel M; Kwag J; Paulsen O; Dayan P
    Nat Neurosci; 2005 Dec; 8(12):1677-83. PubMed ID: 16261136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between spike waveform classification and temporal sequence detection.
    Quirk MC; Wilson MA
    J Neurosci Methods; 1999 Dec; 94(1):41-52. PubMed ID: 10638814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity.
    Kampa BM; Clements J; Jonas P; Stuart GJ
    J Physiol; 2004 Apr; 556(Pt 2):337-45. PubMed ID: 14754998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing.
    Lengyel M; Szatmáry Z; Erdi P
    Hippocampus; 2003; 13(6):700-14. PubMed ID: 12962315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo.
    Henze DA; Wittner L; Buzsáki G
    Nat Neurosci; 2002 Aug; 5(8):790-5. PubMed ID: 12118256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal neurons responding to first-time dislocation of a target object.
    Fyhn M; Molden S; Hollup S; Moser MB; Moser E
    Neuron; 2002 Aug; 35(3):555-66. PubMed ID: 12165476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA(B) receptors inhibit backpropagating dendritic spikes in hippocampal CA1 pyramidal cells in vivo.
    Leung LS; Peloquin P
    Hippocampus; 2006; 16(4):388-407. PubMed ID: 16411229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of temporal integration, spike timing and spike threshold regulation by a dendrotoxin-sensitive K⁺ current in rat CA1 hippocampal cells.
    Giglio AM; Storm JF
    Eur J Neurosci; 2014 Jan; 39(1):12-23. PubMed ID: 24148023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells.
    Zsiros V; Hestrin S
    J Neurophysiol; 2005 Jun; 93(6):3248-56. PubMed ID: 15716369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation.
    Wu WW; Chan CS; Disterhoft JF
    J Neurophysiol; 2004 Oct; 92(4):2346-56. PubMed ID: 15190096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative spike timing in pairs of hippocampal neurons distinguishes the beginning and end of journeys.
    Shapiro ML; Ferbinteanu J
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4287-92. PubMed ID: 16537523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.