BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1587253)

  • 1. High speed electrophoresis simulation for optimization of continuous flow electrophoresis and high performance capillary techniques: Part I. Computer model.
    Heinrich J; Wagner H
    Electrophoresis; 1992; 13(1-2):44-9. PubMed ID: 1587253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open source simulation tool for electrophoretic stacking, focusing, and separation.
    Bercovici M; Lele SK; Santiago JG
    J Chromatogr A; 2009 Feb; 1216(6):1008-18. PubMed ID: 19124132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic computer simulations of electrophoresis: three decades of active research.
    Thormann W; Caslavska J; Breadmore MC; Mosher RA
    Electrophoresis; 2009 Jun; 30 Suppl 1():S16-26. PubMed ID: 19517506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Joule heating on electrokinetic transport.
    Cetin B; Li D
    Electrophoresis; 2008 Mar; 29(5):994-1005. PubMed ID: 18271065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergism of capillary isotachophoresis and capillary zone electrophoresis.
    Krivánková L; Bocek P
    J Chromatogr B Biomed Sci Appl; 1997 Feb; 689(1):13-34. PubMed ID: 9061479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation on a continuous moving chelation boundary in ethylenediaminetetraacetic acid-based sample sweeping in capillary electrophoresis.
    Jin J; Shao J; Li S; Zhang W; Fan LY; Cao CX
    J Chromatogr A; 2009 Jun; 1216(24):4913-22. PubMed ID: 19439312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments.
    Jaros M; Vceláková K; Zusková I; Gas B
    Electrophoresis; 2002 Aug; 23(16):2667-77. PubMed ID: 12210171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of electrophoretic separations: effect of numerical and molecular diffusion on pH calculations in poorly buffered systems.
    Sounart TL; Baygents JC
    Electrophoresis; 2000 Jul; 21(12):2287-95. PubMed ID: 10939437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the electrode compartment separating membranes on continuous flow electrophoresis.
    Heinrich J; Wagner H
    Electrophoresis; 1993; 14(1-2):99-107. PubMed ID: 8462523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic computer simulations of electrophoresis: a versatile research and teaching tool.
    Thormann W; Breadmore MC; Caslavska J; Mosher RA
    Electrophoresis; 2010 Mar; 31(5):726-54. PubMed ID: 20191541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster.
    Jaros M; Hruska V; Stedrý M; Zusková I; Gas B
    Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standard systems for measurement of pK values and ionic mobilities: 2. Univalent weak bases.
    Slampová A; Krivánková L; Gebauer P; Bocek P
    J Chromatogr A; 2009 Apr; 1216(17):3637-41. PubMed ID: 19168181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotachophoresis at pH extremes: theory and experimental validation.
    Ermakov SV; Zhukov MY; Capelli L; Righetti PG
    Electrophoresis; 1998 Feb; 19(2):192-205. PubMed ID: 9548279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: an interplay between theory and practice.
    Hjertén S
    Electrophoresis; 1990 Sep; 11(9):665-90. PubMed ID: 2257839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.
    Walhagen K; Huber MI; Hennessy TP; Hearn MT
    Biopolymers; 2003; 71(4):429-53. PubMed ID: 14517897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study of the formation of high-resistivity zones at the gel/buffer interface in CE.
    Khozikov V; Kosobokova O; Citver G; Tyshko G; Gavrilov DN; Gudkov G; Gorfinkel V
    Electrophoresis; 2007 Feb; 28(3):317-21. PubMed ID: 17154326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of scaling up free flow electrophoresis.
    Painuly P; Roman MC
    Appl Theor Electrophor; 1993; 3(3-4):119-27. PubMed ID: 8390297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.