These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1587266)

  • 21. Equilibrium unfolding of dimeric and engineered monomeric forms of lambda Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate.
    Maity H; Mossing MC; Eftink MR
    Arch Biochem Biophys; 2005 Feb; 434(1):93-107. PubMed ID: 15629113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colicin E1 forms a dimer after urea-induced unfolding.
    Steer BA; DiNardo AA; Merrill AR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):631-8. PubMed ID: 10359646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants.
    Royer CA; Mann CJ; Matthews CR
    Protein Sci; 1993 Nov; 2(11):1844-52. PubMed ID: 8268795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor.
    Marqusee S; Sauer RT
    Protein Sci; 1994 Dec; 3(12):2217-25. PubMed ID: 7756981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan replacements in the trp aporepressor from Escherichia coli: probing the equilibrium and kinetic folding models.
    Mann CJ; Royer CA; Matthews CR
    Protein Sci; 1993 Nov; 2(11):1853-61. PubMed ID: 8268796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Domains in lambda Cro repressor. A calorimetric study.
    Griko YV; Rogov VV; Privalov PL
    Biochemistry; 1992 Dec; 31(50):12701-5. PubMed ID: 1472508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic analysis of the structural stability of phage 434 Cro protein.
    Padmanabhan S; Laurents DV; Fernández AM; Elias-Arnanz M; Ruiz-Sanz J; Mateo PL; Rico M; Filimonov VV
    Biochemistry; 1999 Nov; 38(47):15536-47. PubMed ID: 10569937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea.
    Pervushin K; Wider G; Iwai H; Wüthrich K
    Biochemistry; 2004 Nov; 43(44):13937-43. PubMed ID: 15518542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-stage thermal unfolding of [Cys55]-substituted Cro repressor of bacteriophage lambda.
    Gitelson GI; Griko Yu V; Kurochkin AV; Rogov VV; Kutyshenko VP; Kirpichnikov MP; Privalov PL
    FEBS Lett; 1991 Sep; 289(2):201-4. PubMed ID: 1833238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor.
    Robinson CR; Sauer RT
    Biochemistry; 1996 Nov; 35(44):13878-84. PubMed ID: 8909284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the lambda tof repressor protein in solution. Heat stability and its relation to binding ability to DNA.
    Iwahashi H; Akutsu H; Kobayashi Y; Kyogoku Y; Ono T; Koga H; Horiuchi T
    J Biochem; 1982 Apr; 91(4):1213-21. PubMed ID: 7047511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of a hyper-cleavable monomeric fragment of phage lambda repressor containing the cleavage site region.
    Ndjonka D; Bell CE
    J Mol Biol; 2006 Sep; 362(3):479-89. PubMed ID: 16934834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR determination of residual structure in a urea-denatured protein, the 434-repressor.
    Neri D; Billeter M; Wider G; Wüthrich K
    Science; 1992 Sep; 257(5076):1559-63. PubMed ID: 1523410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilization of lambda repressor against thermal denaturation by site-directed Gly----Ala changes in alpha-helix 3.
    Hecht MH; Sturtevant JM; Sauer RT
    Proteins; 1986 Sep; 1(1):43-6. PubMed ID: 3449850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folding propensities of synthetic peptide fragments covering the entire sequence of phage 434 Cro protein.
    Padmanabhan S; Jiménez MA; Rico M
    Protein Sci; 1999 Aug; 8(8):1675-88. PubMed ID: 10452612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1H, 15N and 13C NMR assignments of the 434 repressor fragments 1-63 and 44-63 unfolded in 7 M urea.
    Neri D; Wider G; Wüthrich K
    FEBS Lett; 1992 Jun; 303(2-3):129-35. PubMed ID: 1607010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form.
    Neri D; Wider G; Wüthrich K
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4397-401. PubMed ID: 1584772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.