BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1587318)

  • 1. A comparison of intact and in-vitro locomotion in an adult amphibian.
    Wheatley M; Edamura M; Stein RB
    Exp Brain Res; 1992; 88(3):609-14. PubMed ID: 1587318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonergic modulation of the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Greer JJ; Stein RB
    Exp Brain Res; 1996 Sep; 111(1):57-67. PubMed ID: 8891637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro preparation of the mudpuppy for simultaneous intracellular and electromyographic recording during locomotion.
    Wheatley M; Stein RB
    J Neurosci Methods; 1992 Apr; 42(1-2):129-37. PubMed ID: 1405730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activity of interneurons during locomotion in the in vitro necturus spinal cord.
    Wheatley M; Jovanović K; Stein RB; Lawson V
    J Neurophysiol; 1994 Jun; 71(6):2025-32. PubMed ID: 7931500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cholinergic and noradrenergic agents on locomotion in the mudpuppy (Necturus maculatus).
    Fok M; Stein RB
    Exp Brain Res; 2002 Aug; 145(4):498-504. PubMed ID: 12172661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of strut-like behavior at the shoulder.
    Carrier DR; Deban SM; Fischbein T
    J Exp Biol; 2008 Jan; 211(Pt 1):150-62. PubMed ID: 18083743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the effect of intrathecal administration of clonidine and yohimbine on the locomotion of intact and spinal cats.
    Giroux N; Reader TA; Rossignol S
    J Neurophysiol; 2001 Jun; 85(6):2516-36. PubMed ID: 11387398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous and NMDA evoked motor rhythms in the neonatal mouse spinal cord: an in vitro study with comparisons to in situ activity.
    Hernandez P; Elbert K; Droge MH
    Exp Brain Res; 1991; 85(1):66-74. PubMed ID: 1884765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats.
    Giroux N; Chau C; Barbeau H; Reader TA; Rossignol S
    J Neurophysiol; 2003 Aug; 90(2):1027-45. PubMed ID: 12904502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forelimb electromyographic responses to motor cortex stimulation during locomotion in the cat.
    Armstrong DM; Drew T
    J Physiol; 1985 Oct; 367():327-51. PubMed ID: 4057102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation by glycine, Mg2+ and polyamines of the N-methyl-D-aspartate-induced locomotion in the neonatal rat spinal cord in vitro.
    Bertrand S; Cazalets JR
    Neuroscience; 1999; 94(4):1199-206. PubMed ID: 10625059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forelimb muscle activity during equine locomotion.
    Harrison SM; Whitton RC; King M; Haussler KK; Kawcak CE; Stover SM; Pandy MG
    J Exp Biol; 2012 Sep; 215(Pt 17):2980-91. PubMed ID: 22875767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG activity of the muscles of the neck and forelimbs during different forms of locomotion.
    Tokuriki M; Ohtsuki R; Kai M; Hiraga A; Oki H; Miyahara Y; Aoki O
    Equine Vet J Suppl; 1999 Jul; (30):231-4. PubMed ID: 10659258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord.
    Cheng J; Jovanovic K; Aoyagi Y; Bennett DJ; Han Y; Stein RB
    Exp Brain Res; 2002 Jul; 145(2):190-8. PubMed ID: 12110959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of extrinsic limb muscles in dogs at walk, trot and gallop.
    Deban SM; Schilling N; Carrier DR
    J Exp Biol; 2012 Jan; 215(Pt 2):287-300. PubMed ID: 22189773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.
    Frigon A; Thibaudier Y; Hurteau MF
    Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization and modulation of rhythmogenic locomotor network in the mudpuppy (Necturus maculatus).
    Jovanović K; Cheng J; Yoshida K; Stein RB
    Ann N Y Acad Sci; 1998 Nov; 860():480-2. PubMed ID: 10026083
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.