These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 1587463)

  • 1. Surface components of HeLa cells that inhibit cytadherence of Chlamydia trachomatis.
    Joseph TD; Bose SK
    FEMS Microbiol Lett; 1992 Mar; 70(2):177-80. PubMed ID: 1587463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A heat-labile protein of Chlamydia trachomatis binds to HeLa cells and inhibits the adherence of chlamydiae.
    Joseph TD; Bose SK
    Proc Natl Acad Sci U S A; 1991 May; 88(9):4054-8. PubMed ID: 2023955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further characterization of an outer membrane protein of Chlamydia trachomatis with cytadherence properties.
    Joseph TD; Bose SK
    FEMS Microbiol Lett; 1991 Nov; 68(2):167-71. PubMed ID: 1663892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s).
    Vretou E; Goswami PC; Bose SK
    J Gen Microbiol; 1989 Dec; 135(12):3229-37. PubMed ID: 2636258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis.
    Swanson AF; Ezekowitz RA; Lee A; Kuo CC
    Infect Immun; 1998 Apr; 66(4):1607-12. PubMed ID: 9529088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive heterogeneity of the protein composition of Chlamydia trachomatis following serial passage in two different cell lines.
    Goswami PC; Vretou E; Bose SK
    J Gen Microbiol; 1990 Aug; 136(8):1623-9. PubMed ID: 2262794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic cell components that bind to chlamydial elementary bodies: the histones.
    Vretou E; Eliades P; Psarrou E; Kouvatsou R
    FEMS Microbiol Lett; 1992 Mar; 70(3):225-30. PubMed ID: 1624104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNAc beta 1-4Gal beta 1-4GLC sequences-found in asialo-GM1 and asial-GM2.
    Krivan HC; Nilsson B; Lingwood CA; Ryu H
    Biochem Biophys Res Commun; 1991 Mar; 175(3):1082-9. PubMed ID: 2025240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of adherence and growth of Chlamydia trachomatis by estrogen treatment of HeLa cells.
    Bose SK; Goswami PC
    Infect Immun; 1986 Sep; 53(3):646-50. PubMed ID: 3744558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host modification of the adherence properties of Chlamydia trachomatis.
    Bose SK; Goswami PC
    J Gen Microbiol; 1986 Jun; 132(6):1631-9. PubMed ID: 3806051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells.
    Swanson AF; Kuo CC
    Infect Immun; 1994 Jan; 62(1):24-8. PubMed ID: 8262634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia-infected cells shed Gp96 to prevent chlamydial re-infection.
    Karunakaran K; Subbarayal P; Vollmuth N; Rudel T
    Mol Microbiol; 2015 Nov; 98(4):694-711. PubMed ID: 26235316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells.
    Majeed M; Kihlström E
    Infect Immun; 1991 Dec; 59(12):4465-72. PubMed ID: 1937805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis.
    Ward ME; Murray A
    J Gen Microbiol; 1984 Jul; 130(7):1765-80. PubMed ID: 6470672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells.
    Bose SK; Paul RG
    J Gen Microbiol; 1982 Jun; 128(6):1371-9. PubMed ID: 6288839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells.
    Carabeo RA; Grieshaber SS; Fischer E; Hackstadt T
    Infect Immun; 2002 Jul; 70(7):3793-803. PubMed ID: 12065523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: the role of calmodulin.
    Murray A; Ward ME
    J Gen Microbiol; 1984 Jan; 130(1):193-201. PubMed ID: 6423768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes.
    Wenman WM; Meuser RU
    J Bacteriol; 1986 Feb; 165(2):602-7. PubMed ID: 3511037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.