These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15875850)

  • 1. Using stable and unstable profiles to deduce deformation limits of the air-water interface.
    Cortat FP; Miklavcic SJ
    Langmuir; 2004 Apr; 20(8):3208-20. PubMed ID: 15875850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable van der Waals-induced deformations of the air-water interface. Theoretical predictions and a suggestion for an experiment.
    Miklavcic SJ; White LR
    Langmuir; 2006 Aug; 22(16):6961-8. PubMed ID: 16863246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How closely can a solid approach an air-water surface without becoming wet?
    Cortat FP; Miklavcic SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):052601. PubMed ID: 14682825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal and scaling behavior at the proximity of the solid to the deformable air-water interface.
    Wang YZ; Wu D; Xiong XM; Zhang JX
    Langmuir; 2007 Nov; 23(24):12119-24. PubMed ID: 17705407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations.
    Ramezani A; Alasty A; Akbari J
    Nanotechnology; 2008 Jan; 19(1):015501. PubMed ID: 21730532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic van der Waals equation of state and statistical mechanical representations of the van der Waals parameters.
    Eu BC; Rah K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031203. PubMed ID: 11308638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical model for the deformation of a fluid-fluid interface beneath an AFM probe.
    Quinn DB; Feng J; Stone HA
    Langmuir; 2013 Feb; 29(5):1427-34. PubMed ID: 23293921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale deformation of a liquid surface in interaction with a nanoprobe.
    Ledesma-Alonso R; Tordjeman P; Legendre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061602. PubMed ID: 23005104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface tension of ab initio liquid water at the water-air interface.
    Nagata Y; Ohto T; Bonn M; Kühne TD
    J Chem Phys; 2016 May; 144(20):204705. PubMed ID: 27250323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.
    Rosenholm JB
    Adv Colloid Interface Sci; 2018 Mar; 253():66-116. PubMed ID: 29422417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic-Colloidal Interactions of an Oil Droplet and a Membrane Surface.
    Galvagno M; Ramon GZ
    Langmuir; 2020 Mar; 36(11):2858-2864. PubMed ID: 32101009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Contact Angle Variation of Floating Particles Makes It Difficult to Use the Neumann Condition To Quantify the Air-Water Interface Deformation in Three-Dimensional Space.
    Ma X; Nguyen AV
    Langmuir; 2019 Feb; 35(7):2571-2579. PubMed ID: 30674188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strongly nonlinear theory of rapid solidification near absolute stability.
    Kowal KN; Altieri AL; Davis SH
    Phys Rev E; 2017 Oct; 96(4-1):042801. PubMed ID: 29347461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of Local Surface Properties of an Air Bubble in Water Caused by Its Interaction with Another Surface.
    Del Castillo LA; Ohnishi S; Carnie SL; Horn RG
    Langmuir; 2016 Aug; 32(30):7671-82. PubMed ID: 27391417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of adhesion in humid air.
    Kim DI; Grobelny J; Pradeep N; Cook RF
    Langmuir; 2008 Mar; 24(5):1873-7. PubMed ID: 18193903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repulsive van der Waals forces in soft matter: why bubbles do not stick to walls.
    Tabor RF; Manica R; Chan DY; Grieser F; Dagastine RR
    Phys Rev Lett; 2011 Feb; 106(6):064501. PubMed ID: 21405470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape deformation and circle instability in two-dimensional lipid domains by dipolar force: a shape- and size-dependent line tension model.
    Iwamoto M; Ou-Yang ZC
    Phys Rev Lett; 2004 Nov; 93(20):206101. PubMed ID: 15600941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Van der Waals interaction in uniaxial anisotropic media.
    Kornilovitch PE
    J Phys Condens Matter; 2013 Jan; 25(3):035102. PubMed ID: 23234868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual Interfacial Phase Behavior of Two Nonmiscible Liquids in a Cylindrical Test Tube: Equilibrium Shapes and Stability of Axisymmetric Liquid Bridges under Gravity.
    Ligoure C
    J Colloid Interface Sci; 2000 Mar; 223(2):190-196. PubMed ID: 10700402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. van der Waals phase transition in protein solutions.
    Wills PR; Winzor DJ
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):832-6. PubMed ID: 15930649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.