These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15877394)

  • 1. Macrolactones and polyesters from ricinoleic acid.
    Slivniak R; Domb AJ
    Biomacromolecules; 2005; 6(3):1679-88. PubMed ID: 15877394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolytic degradation and drug release of ricinoleic acid-lactic acid copolyesters.
    Slivniak R; Ezra A; Domb AJ
    Pharm Res; 2006 Jun; 23(6):1306-12. PubMed ID: 16741657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactone, dialkyl diester, and diol.
    Jiang Z
    Biomacromolecules; 2008 Nov; 9(11):3246-51. PubMed ID: 18939863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High molecular weight bile acid and ricinoleic acid-based copolyesters via entropy-driven ring-opening metathesis polymerisation.
    Gautrot JE; Zhu XX
    Chem Commun (Camb); 2008 Apr; (14):1674-6. PubMed ID: 18368161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytic degradation of ricinoleic-sebacic-ester-anhydride copolymers.
    Krasko MY; Domb AJ
    Biomacromolecules; 2005; 6(4):1877-84. PubMed ID: 16004424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring-opening polymerization of cyclic esters by cyclodextrins.
    Harada A; Osaki M; Takashima Y; Yamaguchi H
    Acc Chem Res; 2008 Sep; 41(9):1143-52. PubMed ID: 18690725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copolymers from unsaturated macrolactones: toward the design of cross-linked biodegradable polyesters.
    van der Meulen I; Li Y; Deumens R; Joosten EA; Koning CE; Heise A
    Biomacromolecules; 2011 Mar; 12(3):837-43. PubMed ID: 21319813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer.
    Shikanov A; Domb AJ
    Biomacromolecules; 2006 Jan; 7(1):288-96. PubMed ID: 16398527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation.
    Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P
    Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of novel biotinylated biodegradable poly(ethylene glycol)-b-poly(carbonate-lactic acid) copolymers.
    Xie Z; Guan H; Lü C; Chen X; Jing X
    Acta Biomater; 2005 Nov; 1(6):635-41. PubMed ID: 16701844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monohydroxylated poly(3-hydroxyoctanoate) oligomers and its functionalized derivatives used as macroinitiators in the synthesis of degradable diblock copolyesters.
    Timbart L; Renard E; Tessier M; Langlois V
    Biomacromolecules; 2007 Apr; 8(4):1255-65. PubMed ID: 17338561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk Organocatalytic Synthetic Access to Statistical Copolyesters from l-Lactide and ε-Caprolactone Using Benzoic Acid.
    Mezzasalma L; Harrisson S; Saba S; Loyer P; Coulembier O; Taton D
    Biomacromolecules; 2019 May; 20(5):1965-1974. PubMed ID: 30964279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel--effect of additives.
    Shikanov A; Ezra A; Domb AJ
    J Control Release; 2005 Jun; 105(1-2):52-67. PubMed ID: 15955366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization.
    Srivastava RK; Albertsson AC
    Biomacromolecules; 2006 Sep; 7(9):2531-8. PubMed ID: 16961314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ricinoleic acid as a marker for ergot impurities in rye and rye products.
    Franzmann C; Wächter J; Dittmer N; Humpf HU
    J Agric Food Chem; 2010 Apr; 58(7):4223-9. PubMed ID: 20297816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase-catalyzed copolymerization of dialkyl carbonate with 1,4-butanediol and ω-pentadecalactone: synthesis of poly(ω-pentadecalactone-co-butylene-co-carbonate).
    Jiang Z
    Biomacromolecules; 2011 May; 12(5):1912-9. PubMed ID: 21449602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D; Sen R; Basu JK; De S
    Bioresour Technol; 2010 Jan; 101(1):6-13. PubMed ID: 19717301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of 2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone as a monomer for the preparation of copolyesters.
    Pinilla IM; Martínez MB; Galbis JA
    Carbohydr Res; 2003 Mar; 338(6):549-55. PubMed ID: 12668111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strontium Isopropoxide: A Highly Active Catalyst for the Ring-Opening Polymerization of Lactide and Various Lactones.
    Bandelli D; Weber C; Schubert US
    Macromol Rapid Commun; 2019 Oct; 40(20):e1900306. PubMed ID: 31506988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.